Sentimental Analysis of COVID-19 Related Messages in Social Networks by Involving an N-Gram Stacked Autoencoder Integrated in an Ensemble Learning Scheme
The current population worldwide extensively uses social media to share thoughts, societal issues, and personal concerns. Social media can be viewed as an intelligent platform that can be augmented with a capability to analyze and predict various issues such as business needs, environmental needs, e...
Guardado en:
Autores principales: | Venkatachalam Kandasamy, Pavel Trojovský, Fadi Al Machot, Kyandoghere Kyamakya, Nebojsa Bacanin, Sameh Askar, Mohamed Abouhawwash |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c8e487ad6674a1bb062c2bdcf372393 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neumonías por gérmenes Gram negatives
por: Donoso,J. M, et al.
Publicado: (1976) -
How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data
por: Ning Xiang, et al.
Publicado: (2021) -
A temporal geography of encounters
por: Vinicius M. Netto, et al.
Publicado: (2018) -
Comparative Analysis of Dalbavancin versus Other Antimicrobial Options for Gram-Positive Cocci Infections: Effectiveness, Hospital Stay and Mortality
por: Mar de Pablo-Miró, et al.
Publicado: (2021) -
A hybrid network intrusion detection using darwinian particle swarm optimization and stacked autoencoder hoeffding tree
por: B. Ida Seraphim, et al.
Publicado: (2021)