Temperature Dependence of Conformational Relaxation of Poly(ethylene oxide) Melts

The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hye Sol Kim, Taejin Kwon, Chung Bin Park, Bong June Sung
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
PEO
Acceso en línea:https://doaj.org/article/9c91e28ef3b14582a5d7ef744fad1b57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by investigating poly(ethylene oxide) (PEO) melts, which have been considered excellent solid polyelectrolytes. In this work, we perform all-atom molecular dynamics simulations up to 300 ns at a range of temperatures for PEO melts. We find from our simulations that the conformations of strands of PEO chains in melts show ideal chain statistics when the strand consists of at least 10 monomers. At the temperature range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>=</mo></mrow></semantics></math></inline-formula> 400 to 300 K, the mean-square displacements (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⟨</mo><mo>Δ</mo><msup><mi>r</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>⟩</mo></mrow></semantics></math></inline-formula>) of the centers of mass of chains enter the Fickian regime, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>⟨</mo><mo>Δ</mo><msup><mi>r</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>⟩</mo></mrow><mo>∼</mo><msup><mi>t</mi><mn>1</mn></msup></mrow></semantics></math></inline-formula>. On the other hand, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⟨</mo><mo>Δ</mo><msup><mi>r</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>⟩</mo></mrow></semantics></math></inline-formula> of the monomers of the chains scales as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>⟨</mo><mo>Δ</mo><msup><mi>r</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>⟩</mo></mrow><mo>∼</mo><msup><mi>t</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> at intermediate time scales as expected for the Rouse model. We investigate various relaxation modes of the polymer chains and their relaxation times (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>n</mi></msub></semantics></math></inline-formula>), by calculating for each strand of <i>n</i> monomers. Interestingly, different normal modes of the PEO chains experience identical temperature dependence, thus indicating that the TTS principle would hold for the given temperature range.