Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath
The problem of respiratory sound classification has received good attention from the clinical scientists and medical researcher’s community in the last year to the diagnosis of COVID-19 disease. The Artificial Intelligence (AI) based models deployed into the real-world to identify the COVID-19 disea...
Guardado en:
Autores principales: | Kranthi Kumar Lella, Alphonse Pja |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9c9968a2b5af41ddb9e6ef3a2fe26217 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Detection and Classification of Cough Events Based on Deep Learning
por: Hossein Tabatabaei Seyed Amir, et al.
Publicado: (2020) -
Abnormal Respiratory Sounds Classification Using Deep CNN Through Artificial Noise Addition
por: Rizwana Zulfiqar, et al.
Publicado: (2021) -
SAP-Net: Deep learning to predict sound absorption performance of metaporous materials
por: Hongjia Zhang, et al.
Publicado: (2021) -
Automated COVID-19 and Heart Failure Detection Using DNA Pattern Technique with Cough Sounds
por: Mehmet Ali Kobat, et al.
Publicado: (2021) -
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study
por: Pei Yang, et al.
Publicado: (2021)