Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9cbb236c9a47446fa4b5be71053e21f2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9cbb236c9a47446fa4b5be71053e21f22021-12-02T17:01:56ZIntegration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance10.1038/s41467-021-22989-12041-1723https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f22021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22989-1https://doaj.org/toc/2041-1723Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response.Joshua E. LewisMelissa L. KempNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joshua E. Lewis Melissa L. Kemp Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
description |
Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response. |
format |
article |
author |
Joshua E. Lewis Melissa L. Kemp |
author_facet |
Joshua E. Lewis Melissa L. Kemp |
author_sort |
Joshua E. Lewis |
title |
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
title_short |
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
title_full |
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
title_fullStr |
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
title_full_unstemmed |
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
title_sort |
integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f2 |
work_keys_str_mv |
AT joshuaelewis integrationofmachinelearningandgenomescalemetabolicmodelingidentifiesmultiomicsbiomarkersforradiationresistance AT melissalkemp integrationofmachinelearningandgenomescalemetabolicmodelingidentifiesmultiomicsbiomarkersforradiationresistance |
_version_ |
1718381985562361856 |