Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance

Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response.

Guardado en:
Detalles Bibliográficos
Autores principales: Joshua E. Lewis, Melissa L. Kemp
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9cbb236c9a47446fa4b5be71053e21f2
record_format dspace
spelling oai:doaj.org-article:9cbb236c9a47446fa4b5be71053e21f22021-12-02T17:01:56ZIntegration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance10.1038/s41467-021-22989-12041-1723https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f22021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22989-1https://doaj.org/toc/2041-1723Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response.Joshua E. LewisMelissa L. KempNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joshua E. Lewis
Melissa L. Kemp
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
description Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response.
format article
author Joshua E. Lewis
Melissa L. Kemp
author_facet Joshua E. Lewis
Melissa L. Kemp
author_sort Joshua E. Lewis
title Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
title_short Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
title_full Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
title_fullStr Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
title_full_unstemmed Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
title_sort integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f2
work_keys_str_mv AT joshuaelewis integrationofmachinelearningandgenomescalemetabolicmodelingidentifiesmultiomicsbiomarkersforradiationresistance
AT melissalkemp integrationofmachinelearningandgenomescalemetabolicmodelingidentifiesmultiomicsbiomarkersforradiationresistance
_version_ 1718381985562361856