Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
Personalized prediction of tumor radiosensitivity would facilitate development of precision medicine workflows for cancer treatment. Here, the authors integrate machine learning and genome-scale metabolic modeling approaches to identify multi-omics biomarkers predictive of radiation response.
Guardado en:
Autores principales: | Joshua E. Lewis, Melissa L. Kemp |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9cbb236c9a47446fa4b5be71053e21f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk
por: Lang Wu, et al.
Publicado: (2020) -
Integrative multi-omics analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and immunotherapy
por: Qianxing Mo, et al.
Publicado: (2020) -
Multi-omics integrative analysis with genome-scale metabolic model simulation reveals global cellular adaptation of Aspergillus niger under industrial enzyme production condition
por: Hongzhong Lu, et al.
Publicado: (2018) -
From multi-omics integration towards novel genomic interaction networks to identify key cancer cell line characteristics
por: T. J. M. Kuijpers, et al.
Publicado: (2021) -
Identification of early and intermediate biomarkers for ARDS mortality by multi-omic approaches
por: S. Y. Liao, et al.
Publicado: (2021)