A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries

Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups togethe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Le Donne Enrico
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2018
Materias:
Acceso en línea:https://doaj.org/article/9cdfe596c6444463aa6275b34dbd783b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9cdfe596c6444463aa6275b34dbd783b
record_format dspace
spelling oai:doaj.org-article:9cdfe596c6444463aa6275b34dbd783b2021-12-05T14:10:38ZA Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries2299-327410.1515/agms-2017-0007https://doaj.org/article/9cdfe596c6444463aa6275b34dbd783b2018-01-01T00:00:00Zhttps://doi.org/10.1515/agms-2017-0007https://doaj.org/toc/2299-3274Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.Le Donne EnricoDe Gruyterarticlecarnot groupssub-riemannian geometrysub-finsler geometryhomogeneous spaceshomogeneous groupsnilpotent groupsmetric groups53c1743a8022e2522f3014m17AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 5, Iss 1, Pp 116-137 (2018)
institution DOAJ
collection DOAJ
language EN
topic carnot groups
sub-riemannian geometry
sub-finsler geometry
homogeneous spaces
homogeneous groups
nilpotent groups
metric groups
53c17
43a80
22e25
22f30
14m17
Analysis
QA299.6-433
spellingShingle carnot groups
sub-riemannian geometry
sub-finsler geometry
homogeneous spaces
homogeneous groups
nilpotent groups
metric groups
53c17
43a80
22e25
22f30
14m17
Analysis
QA299.6-433
Le Donne Enrico
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
description Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.
format article
author Le Donne Enrico
author_facet Le Donne Enrico
author_sort Le Donne Enrico
title A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
title_short A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
title_full A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
title_fullStr A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
title_full_unstemmed A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
title_sort primer on carnot groups: homogenous groups, carnot-carathéodory spaces, and regularity of their isometries
publisher De Gruyter
publishDate 2018
url https://doaj.org/article/9cdfe596c6444463aa6275b34dbd783b
work_keys_str_mv AT ledonneenrico aprimeroncarnotgroupshomogenousgroupscarnotcaratheodoryspacesandregularityoftheirisometries
AT ledonneenrico primeroncarnotgroupshomogenousgroupscarnotcaratheodoryspacesandregularityoftheirisometries
_version_ 1718371854458028032