A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups togethe...
Guardado en:
Autor principal: | Le Donne Enrico |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9cdfe596c6444463aa6275b34dbd783b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sub-Finsler Horofunction Boundaries of the Heisenberg Group
por: Fisher Nate, et al.
Publicado: (2021) -
Riesz means on homogeneous trees
por: Papageorgiou Effie
Publicado: (2021) -
Sadi Carnot
por: Dafni Mora Guerra
Publicado: (2021) -
K-theory for the group C*-algebras of nilpotent discrete groups
por: Sudo,Takahiro
Publicado: (2013) -
Ischia Group Theory 2010 proceedings of the conference : Ischia, Naples, Italy, 14-17 April 2010 /
Publicado: (2012)