TaxoDaCML: Taxonomy based Divide and Conquer using machine learning approach for DDoS attack classification
Distributed Denial of Service (DDoS) attack is one of the most dangerous attacks that result in bringing down the server(s) and it is essential to classify the exact attack to implement robust security measures. In this work, we present an approach for detecting the prominent DDoS attacks that can b...
Guardado en:
Autores principales: | Onkar Thorat, Nirali Parekh, Ramchandra Mangrulkar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ce2e788300f4c1bb5a0a36f0605e672 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City
por: Asmaa A. Elsaeidy, et al.
Publicado: (2021) -
Profiling Attack against RSA Key Generation Based on a Euclidean Algorithm
por: Sadiel de la Fe, et al.
Publicado: (2021) -
Distributed Hybrid Double-Spending Attack Prevention Mechanism for Proof-of-Work and Proof-of-Stake Blockchain Consensuses
por: Nur Arifin Akbar, et al.
Publicado: (2021) -
Securing Resource-Constrained IoT Nodes: Towards Intelligent Microcontroller-Based Attack Detection in Distributed Smart Applications
por: Andrii Shalaginov, et al.
Publicado: (2021) -
VITI: A Tiny Self-Calibrating Sensor for Power-Variation Measurement in FPGAs
por: Brian Udugama, et al.
Publicado: (2021)