Forward models demonstrate that repetition suppression is best modelled by local neural scaling
The neural mechanisms underlying the suppression of fMRI responses to repeated stimuli are under debate. Here, the authors compare computational models to show that only a local scaling model can fit univariate and multivariate fMRI repetition effects across two paradigms and multiple brain regions.
Guardado en:
Autores principales: | Arjen Alink, Hunar Abdulrahman, Richard N. Henson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ce89a73cb404da380a5a1660990deec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reply to ‘Forward models of repetition suppression depend critically on assumptions of noise and granularity’
por: Arjen Alink, et al.
Publicado: (2020) -
Forward models of repetition suppression depend critically on assumptions of noise and granularity
por: Fernando M. Ramírez, et al.
Publicado: (2020) -
Moving the Research Forward: The Best of British Biology Using the Tractable Model System <i>Dictyostelium discoideum</i>
por: Robin S. B. Williams, et al.
Publicado: (2021) -
Local opposite orientation preferences in V1: fMRI sensitivity to fine-grained pattern information
por: Arjen Alink, et al.
Publicado: (2017) -
Neural basis of forward flight control and landing in honeybees
por: M. R. Ibbotson, et al.
Publicado: (2017)