Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients
Abstract COVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on image datasets. To date, it appears that COVID computer-aided diagnosis systems based on CNNs...
Guardado en:
Autores principales: | Fahime Khozeimeh, Danial Sharifrazi, Navid Hoseini Izadi, Javad Hassannataj Joloudari, Afshin Shoeibi, Roohallah Alizadehsani, Juan M. Gorriz, Sadiq Hussain, Zahra Alizadeh Sani, Hossein Moosaei, Abbas Khosravi, Saeid Nahavandi, Sheikh Mohammed Shariful Islam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ceed63c3b1d4d089aecf42d5012cfba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Afshin Shoeibi, et al.
Publicado: (2021) - Chance
-
Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features
por: Anis Malekzadeh, et al.
Publicado: (2021) -
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
Conditional Variational Autoencoder for Learned Image Reconstruction
por: Chen Zhang, et al.
Publicado: (2021)