The dynamics of human body weight change.
An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesi...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9cfc121da06e4fbba059b1604d88b039 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9cfc121da06e4fbba059b1604d88b039 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9cfc121da06e4fbba059b1604d88b0392021-11-25T05:41:21ZThe dynamics of human body weight change.1553-734X1553-735810.1371/journal.pcbi.1000045https://doaj.org/article/9cfc121da06e4fbba059b1604d88b0392008-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18369435/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that a mathematical model of the macronutrient flux balances can capture the long-term dynamics of human weight change; all previous models are special cases of this model. We show that the generic dynamic behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes, and existing data are insufficient to distinguish between these two possibilities. Nevertheless, this distinction has important implications for the efficacy of clinical interventions that alter body composition and mass.Carson C ChowKevin D HallPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 4, Iss 3, p e1000045 (2008) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Carson C Chow Kevin D Hall The dynamics of human body weight change. |
description |
An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that a mathematical model of the macronutrient flux balances can capture the long-term dynamics of human weight change; all previous models are special cases of this model. We show that the generic dynamic behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes, and existing data are insufficient to distinguish between these two possibilities. Nevertheless, this distinction has important implications for the efficacy of clinical interventions that alter body composition and mass. |
format |
article |
author |
Carson C Chow Kevin D Hall |
author_facet |
Carson C Chow Kevin D Hall |
author_sort |
Carson C Chow |
title |
The dynamics of human body weight change. |
title_short |
The dynamics of human body weight change. |
title_full |
The dynamics of human body weight change. |
title_fullStr |
The dynamics of human body weight change. |
title_full_unstemmed |
The dynamics of human body weight change. |
title_sort |
dynamics of human body weight change. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2008 |
url |
https://doaj.org/article/9cfc121da06e4fbba059b1604d88b039 |
work_keys_str_mv |
AT carsoncchow thedynamicsofhumanbodyweightchange AT kevindhall thedynamicsofhumanbodyweightchange AT carsoncchow dynamicsofhumanbodyweightchange AT kevindhall dynamicsofhumanbodyweightchange |
_version_ |
1718414534100647936 |