Continuous monitoring system for safe managements of CO2 storage and geothermal reservoirs
Abstract We have developed a new continuous monitoring system based on small seismic sources and distributed acoustic sensing (DAS). The source system generates continuous waveforms with a wide frequency range. Because the signal timing is accurately controlled, stacking the continuous waveforms enh...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d162e4b63794b1a9d6688edc7c67344 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We have developed a new continuous monitoring system based on small seismic sources and distributed acoustic sensing (DAS). The source system generates continuous waveforms with a wide frequency range. Because the signal timing is accurately controlled, stacking the continuous waveforms enhances the signal-to-noise ratio, allowing the use of a small seismic source to monitor extensive areas (multi-reservoir). Our field experiments demonstrated that the monitoring signal was detected at a distance of ~ 80 km, and temporal variations of the monitoring signal (i.e., seismic velocity) were identified with an error of < 0.01%. Through the monitoring, we identified pore pressure variations due to geothermal operations and rains. When we used seafloor cable for DAS measurements, we identified the monitoring signals at > 10 km far from the source in high-spatial resolution. This study demonstrates that multi-reservoir in an extensive area can be continuously monitored at a relatively low cost by combining our seismic source and DAS. |
---|