Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC
Abstract We explore the system size dependence of heavy-quark-QGP interaction by studying the heavy flavor meson suppression and elliptic flow in Pb–Pb, Xe–Xe, Ar–Ar and O–O collisions at the LHC. The space-time evolution of the QGP is simulated using a $$(3+1)$$ ( 3 + 1 ) -dimensional viscous hydro...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d29edde708b459fa550b0a7f2ec9910 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9d29edde708b459fa550b0a7f2ec9910 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9d29edde708b459fa550b0a7f2ec99102021-11-28T12:12:10ZScaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC10.1140/epjc/s10052-021-09833-y1434-60441434-6052https://doaj.org/article/9d29edde708b459fa550b0a7f2ec99102021-11-01T00:00:00Zhttps://doi.org/10.1140/epjc/s10052-021-09833-yhttps://doaj.org/toc/1434-6044https://doaj.org/toc/1434-6052Abstract We explore the system size dependence of heavy-quark-QGP interaction by studying the heavy flavor meson suppression and elliptic flow in Pb–Pb, Xe–Xe, Ar–Ar and O–O collisions at the LHC. The space-time evolution of the QGP is simulated using a $$(3+1)$$ ( 3 + 1 ) -dimensional viscous hydrodynamic model, while the heavy-quark-QGP interaction is described by an improved Langevin approach that includes both collisional and radiative energy loss inside a thermal medium. Within this framework, we provides a reasonable description of the D meson suppression and flow coefficients in Pb–Pb collisions, as well as predictions for both D and B meson observables in other collision systems yet to be measured. We find a clear hierarchy for the heavy meson suppression with respect to the size of the colliding nuclei, while their elliptic flow coefficient relies on both the system size and the geometric anisotropy of the QGP. Sizable suppression and flow are predicted for both D and B mesons in O–O collisions, which serve as a crucial bridge of jet quenching between large and small collision systems. Scaling behaviors between different collision systems are shown for heavy meson suppression factor and the bulk-eccentricity-rescaled heavy meson elliptic flow as functions of the number of participant nucleons in heavy-ion collisions.Shu-Qing LiWen-Jing XingXiang-Yu WuShanshan CaoGuang-You QinSpringerOpenarticleAstrophysicsQB460-466Nuclear and particle physics. Atomic energy. RadioactivityQC770-798ENEuropean Physical Journal C: Particles and Fields, Vol 81, Iss 11, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Astrophysics QB460-466 Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 |
spellingShingle |
Astrophysics QB460-466 Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 Shu-Qing Li Wen-Jing Xing Xiang-Yu Wu Shanshan Cao Guang-You Qin Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC |
description |
Abstract We explore the system size dependence of heavy-quark-QGP interaction by studying the heavy flavor meson suppression and elliptic flow in Pb–Pb, Xe–Xe, Ar–Ar and O–O collisions at the LHC. The space-time evolution of the QGP is simulated using a $$(3+1)$$ ( 3 + 1 ) -dimensional viscous hydrodynamic model, while the heavy-quark-QGP interaction is described by an improved Langevin approach that includes both collisional and radiative energy loss inside a thermal medium. Within this framework, we provides a reasonable description of the D meson suppression and flow coefficients in Pb–Pb collisions, as well as predictions for both D and B meson observables in other collision systems yet to be measured. We find a clear hierarchy for the heavy meson suppression with respect to the size of the colliding nuclei, while their elliptic flow coefficient relies on both the system size and the geometric anisotropy of the QGP. Sizable suppression and flow are predicted for both D and B mesons in O–O collisions, which serve as a crucial bridge of jet quenching between large and small collision systems. Scaling behaviors between different collision systems are shown for heavy meson suppression factor and the bulk-eccentricity-rescaled heavy meson elliptic flow as functions of the number of participant nucleons in heavy-ion collisions. |
format |
article |
author |
Shu-Qing Li Wen-Jing Xing Xiang-Yu Wu Shanshan Cao Guang-You Qin |
author_facet |
Shu-Qing Li Wen-Jing Xing Xiang-Yu Wu Shanshan Cao Guang-You Qin |
author_sort |
Shu-Qing Li |
title |
Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC |
title_short |
Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC |
title_full |
Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC |
title_fullStr |
Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC |
title_full_unstemmed |
Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC |
title_sort |
scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the lhc |
publisher |
SpringerOpen |
publishDate |
2021 |
url |
https://doaj.org/article/9d29edde708b459fa550b0a7f2ec9910 |
work_keys_str_mv |
AT shuqingli scalingbehaviorsofheavyflavormesonsuppressionandflowindifferentnuclearcollisionsystemsatthelhc AT wenjingxing scalingbehaviorsofheavyflavormesonsuppressionandflowindifferentnuclearcollisionsystemsatthelhc AT xiangyuwu scalingbehaviorsofheavyflavormesonsuppressionandflowindifferentnuclearcollisionsystemsatthelhc AT shanshancao scalingbehaviorsofheavyflavormesonsuppressionandflowindifferentnuclearcollisionsystemsatthelhc AT guangyouqin scalingbehaviorsofheavyflavormesonsuppressionandflowindifferentnuclearcollisionsystemsatthelhc |
_version_ |
1718408157378641920 |