Second-order ResU-Net for automatic MRI brain tumor segmentation
Tumor segmentation using magnetic resonance imaging (MRI) plays a significant role in assisting brain tumor diagnosis and treatment. Recently, U-Net architecture with its variants have become prevalent in the field of brain tumor segmentation. However, the existing U-Net models mainly exploit coarse...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d33f7d7b37f431c9fcea32d69ab6a53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Tumor segmentation using magnetic resonance imaging (MRI) plays a significant role in assisting brain tumor diagnosis and treatment. Recently, U-Net architecture with its variants have become prevalent in the field of brain tumor segmentation. However, the existing U-Net models mainly exploit coarse first-order features for tumor segmentation, and they seldom consider the more powerful second-order statistics of deep features. Therefore, in this work, we aim to explore the effectiveness of second-order statistical features for brain tumor segmentation application, and further propose a novel second-order residual brain tumor segmentation network, i.e., SoResU-Net. SoResU-Net utilizes a number of second-order modules to replace the original skip connection operations, thus augmenting the series of transformation operations and increasing the non-linearity of the segmentation network. Extensive experimental results on the BraTS 2018 and BraTS 2019 datasets demonstrate that SoResU-Net outperforms its baseline, especially on core tumor and enhancing tumor segmentation, illuminating the effectiveness of second-order statistical features for the brain tumor segmentation application. |
---|