Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9d38a50752a74a68828bf7e3b4434d7a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9d38a50752a74a68828bf7e3b4434d7a2021-11-06T10:50:47ZParameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm0273-12231996-973210.2166/wst.2021.032https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a2021-03-01T00:00:00Zhttp://wst.iwaponline.com/content/83/5/1085https://doaj.org/toc/0273-1223https://doaj.org/toc/1996-9732A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared. And the procedure was implemented and discussed for the case of Chaohu city, China. Results of our work reveal that: (i) the adaptive Bayesian method, especially for return level associated to large return period, shows better estimated effect when compared with MLE; it should be noted that the implementation of MLE often produces overy optimistic results in the case of Chaohu city; (ii) AM-H algorithm is more reliable than MLE in terms of uncertainty quantification, and yields relatively narrow credible intervals for the quantile estimates to be instrumental in risk assessment of urban storm drainage planning.Xingpo LiuChengfei XiaYifan TangJiayang TuHuimin WangIWA Publishingarticleadaptive metropolis–hastings (am-h) algorithmfrequency distributionmarkov chain monte carlo (mcmc)parameter optimizationparameter uncertainty analysisrainfall frequency modelingEnvironmental technology. Sanitary engineeringTD1-1066ENWater Science and Technology, Vol 83, Iss 5, Pp 1085-1102 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
adaptive metropolis–hastings (am-h) algorithm frequency distribution markov chain monte carlo (mcmc) parameter optimization parameter uncertainty analysis rainfall frequency modeling Environmental technology. Sanitary engineering TD1-1066 |
spellingShingle |
adaptive metropolis–hastings (am-h) algorithm frequency distribution markov chain monte carlo (mcmc) parameter optimization parameter uncertainty analysis rainfall frequency modeling Environmental technology. Sanitary engineering TD1-1066 Xingpo Liu Chengfei Xia Yifan Tang Jiayang Tu Huimin Wang Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm |
description |
A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared. And the procedure was implemented and discussed for the case of Chaohu city, China. Results of our work reveal that: (i) the adaptive Bayesian method, especially for return level associated to large return period, shows better estimated effect when compared with MLE; it should be noted that the implementation of MLE often produces overy optimistic results in the case of Chaohu city; (ii) AM-H algorithm is more reliable than MLE in terms of uncertainty quantification, and yields relatively narrow credible intervals for the quantile estimates to be instrumental in risk assessment of urban storm drainage planning. |
format |
article |
author |
Xingpo Liu Chengfei Xia Yifan Tang Jiayang Tu Huimin Wang |
author_facet |
Xingpo Liu Chengfei Xia Yifan Tang Jiayang Tu Huimin Wang |
author_sort |
Xingpo Liu |
title |
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm |
title_short |
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm |
title_full |
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm |
title_fullStr |
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm |
title_full_unstemmed |
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm |
title_sort |
parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive metropolis–hastings algorithm |
publisher |
IWA Publishing |
publishDate |
2021 |
url |
https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a |
work_keys_str_mv |
AT xingpoliu parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm AT chengfeixia parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm AT yifantang parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm AT jiayangtu parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm AT huiminwang parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm |
_version_ |
1718443749753749504 |