Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm

A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xingpo Liu, Chengfei Xia, Yifan Tang, Jiayang Tu, Huimin Wang
Formato: article
Lenguaje:EN
Publicado: IWA Publishing 2021
Materias:
Acceso en línea:https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9d38a50752a74a68828bf7e3b4434d7a
record_format dspace
spelling oai:doaj.org-article:9d38a50752a74a68828bf7e3b4434d7a2021-11-06T10:50:47ZParameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm0273-12231996-973210.2166/wst.2021.032https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a2021-03-01T00:00:00Zhttp://wst.iwaponline.com/content/83/5/1085https://doaj.org/toc/0273-1223https://doaj.org/toc/1996-9732A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared. And the procedure was implemented and discussed for the case of Chaohu city, China. Results of our work reveal that: (i) the adaptive Bayesian method, especially for return level associated to large return period, shows better estimated effect when compared with MLE; it should be noted that the implementation of MLE often produces overy optimistic results in the case of Chaohu city; (ii) AM-H algorithm is more reliable than MLE in terms of uncertainty quantification, and yields relatively narrow credible intervals for the quantile estimates to be instrumental in risk assessment of urban storm drainage planning.Xingpo LiuChengfei XiaYifan TangJiayang TuHuimin WangIWA Publishingarticleadaptive metropolis–hastings (am-h) algorithmfrequency distributionmarkov chain monte carlo (mcmc)parameter optimizationparameter uncertainty analysisrainfall frequency modelingEnvironmental technology. Sanitary engineeringTD1-1066ENWater Science and Technology, Vol 83, Iss 5, Pp 1085-1102 (2021)
institution DOAJ
collection DOAJ
language EN
topic adaptive metropolis–hastings (am-h) algorithm
frequency distribution
markov chain monte carlo (mcmc)
parameter optimization
parameter uncertainty analysis
rainfall frequency modeling
Environmental technology. Sanitary engineering
TD1-1066
spellingShingle adaptive metropolis–hastings (am-h) algorithm
frequency distribution
markov chain monte carlo (mcmc)
parameter optimization
parameter uncertainty analysis
rainfall frequency modeling
Environmental technology. Sanitary engineering
TD1-1066
Xingpo Liu
Chengfei Xia
Yifan Tang
Jiayang Tu
Huimin Wang
Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
description A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared. And the procedure was implemented and discussed for the case of Chaohu city, China. Results of our work reveal that: (i) the adaptive Bayesian method, especially for return level associated to large return period, shows better estimated effect when compared with MLE; it should be noted that the implementation of MLE often produces overy optimistic results in the case of Chaohu city; (ii) AM-H algorithm is more reliable than MLE in terms of uncertainty quantification, and yields relatively narrow credible intervals for the quantile estimates to be instrumental in risk assessment of urban storm drainage planning.
format article
author Xingpo Liu
Chengfei Xia
Yifan Tang
Jiayang Tu
Huimin Wang
author_facet Xingpo Liu
Chengfei Xia
Yifan Tang
Jiayang Tu
Huimin Wang
author_sort Xingpo Liu
title Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
title_short Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
title_full Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
title_fullStr Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
title_full_unstemmed Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
title_sort parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive metropolis–hastings algorithm
publisher IWA Publishing
publishDate 2021
url https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a
work_keys_str_mv AT xingpoliu parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm
AT chengfeixia parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm
AT yifantang parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm
AT jiayangtu parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm
AT huiminwang parameteroptimizationanduncertaintyassessmentforrainfallfrequencymodelingusinganadaptivemetropolishastingsalgorithm
_version_ 1718443749753749504