Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...
Guardado en:
Autores principales: | Xingpo Liu, Chengfei Xia, Yifan Tang, Jiayang Tu, Huimin Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Parameter uncertainty methods in evaluating a lumped hydrological model
por: Diaz-Ramirez,Jairo, et al.
Publicado: (2012) -
Self-Adaptive Acceptance Rate-Driven Markov Chain Monte Carlo Method Applied to the Study of Magnetic Nanoparticles
por: Juan Camilo Zapata, et al.
Publicado: (2021) -
Latitudinal Analysis of Rainfall Intensity and Mean Annual Precipitation in Chile
por: Pizarro,Roberto, et al.
Publicado: (2012) -
Resonancia magnética cerebral con secuencia difusión - HASTE en la evaluación clínica del colesteatoma
por: Alzérreca A,Eugenio, et al.
Publicado: (2011) -
Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities
por: Per Bjarte Solibakke
Publicado: (2021)