Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...
Enregistré dans:
Auteurs principaux: | Xingpo Liu, Chengfei Xia, Yifan Tang, Jiayang Tu, Huimin Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Parameter uncertainty methods in evaluating a lumped hydrological model
par: Diaz-Ramirez,Jairo, et autres
Publié: (2012) -
Self-Adaptive Acceptance Rate-Driven Markov Chain Monte Carlo Method Applied to the Study of Magnetic Nanoparticles
par: Juan Camilo Zapata, et autres
Publié: (2021) -
Latitudinal Analysis of Rainfall Intensity and Mean Annual Precipitation in Chile
par: Pizarro,Roberto, et autres
Publié: (2012) -
Resonancia magnética cerebral con secuencia difusión - HASTE en la evaluación clínica del colesteatoma
par: Alzérreca A,Eugenio, et autres
Publié: (2011) -
Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities
par: Per Bjarte Solibakke
Publié: (2021)