Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm
A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!