Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis–Hastings algorithm

A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis–Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xingpo Liu, Chengfei Xia, Yifan Tang, Jiayang Tu, Huimin Wang
Format: article
Langue:EN
Publié: IWA Publishing 2021
Sujets:
Accès en ligne:https://doaj.org/article/9d38a50752a74a68828bf7e3b4434d7a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!