p21-activated kinase 3 (PAK3) is an AP-1 regulated gene contributing to actin organisation and migration of transformed fibroblasts.

Activating Protein 1 (AP-1) plays a vital role in cell proliferation, differentiation and apoptosis. While de-regulation of AP-1 has been linked to many cancers, little is known regarding its downstream transcriptional targets that associate with cellular transformation. Previous studies identified...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nina Holderness Parker, Howard Donninger, Michael J Birrer, Virna D Leaner
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9d5ce22a55ad40afb30df2dc8398cc9f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Activating Protein 1 (AP-1) plays a vital role in cell proliferation, differentiation and apoptosis. While de-regulation of AP-1 has been linked to many cancers, little is known regarding its downstream transcriptional targets that associate with cellular transformation. Previous studies identified PAK3, a serine/threonine kinase, as a potential AP-1 target gene. PAK3 has been implicated in a variety of pathological disorders and over-expression of other PAK-family members has been linked to cancer. In this study, we investigate AP-1 regulation of PAK3 expression and the role of PAK3 in cJun/AP-1-associated cellular transformation. Our results showed elevated PAK3 expression at both the mRNA and protein level in cJun-over-expressing Rat1a fibroblasts, as well as in transformed human fibroblasts. Elevated PAK3 expression in cJun/AP-1 over-expressing cells associated with a significant increase in PAK3 promoter activation. This increased promoter activity was lost when a single putative Jun binding site, which can bind AP-1 directly both in vitro and in vivo, was mutated. Further, inhibition of PAK3 using siRNA showed a regression in the cell morphology, migratory potential and actin organisation associated with AP-1 transformed cells. Our study is a first to describe a role for AP-1 in regulating PAK3 expression and suggest that PAK3 is an AP-1 target required for actin organization and migration observed in transformed cells.