Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation

Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.

Guardado en:
Detalles Bibliográficos
Autores principales: Nadin Ulrich, Kai-Uwe Goss, Andrea Ebert
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9d61fbcad06746a6a19e36cf2342853f
record_format dspace
spelling oai:doaj.org-article:9d61fbcad06746a6a19e36cf2342853f2021-12-02T17:39:43ZExploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation10.1038/s42004-021-00528-92399-3669https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f2021-06-01T00:00:00Zhttps://doi.org/10.1038/s42004-021-00528-9https://doaj.org/toc/2399-3669Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.Nadin UlrichKai-Uwe GossAndrea EbertNature PortfolioarticleChemistryQD1-999ENCommunications Chemistry, Vol 4, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Chemistry
QD1-999
spellingShingle Chemistry
QD1-999
Nadin Ulrich
Kai-Uwe Goss
Andrea Ebert
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
description Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.
format article
author Nadin Ulrich
Kai-Uwe Goss
Andrea Ebert
author_facet Nadin Ulrich
Kai-Uwe Goss
Andrea Ebert
author_sort Nadin Ulrich
title Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_short Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_full Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_fullStr Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_full_unstemmed Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
title_sort exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f
work_keys_str_mv AT nadinulrich exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation
AT kaiuwegoss exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation
AT andreaebert exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation
_version_ 1718379838908137472