Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9d61fbcad06746a6a19e36cf2342853f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9d61fbcad06746a6a19e36cf2342853f2021-12-02T17:39:43ZExploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation10.1038/s42004-021-00528-92399-3669https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f2021-06-01T00:00:00Zhttps://doi.org/10.1038/s42004-021-00528-9https://doaj.org/toc/2399-3669Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.Nadin UlrichKai-Uwe GossAndrea EbertNature PortfolioarticleChemistryQD1-999ENCommunications Chemistry, Vol 4, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Chemistry QD1-999 |
spellingShingle |
Chemistry QD1-999 Nadin Ulrich Kai-Uwe Goss Andrea Ebert Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
description |
Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers. |
format |
article |
author |
Nadin Ulrich Kai-Uwe Goss Andrea Ebert |
author_facet |
Nadin Ulrich Kai-Uwe Goss Andrea Ebert |
author_sort |
Nadin Ulrich |
title |
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
title_short |
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
title_full |
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
title_fullStr |
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
title_full_unstemmed |
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
title_sort |
exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f |
work_keys_str_mv |
AT nadinulrich exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation AT kaiuwegoss exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation AT andreaebert exploringtheoctanolwaterpartitioncoefficientdatasetusingdeeplearningtechniquesanddataaugmentation |
_version_ |
1718379838908137472 |