Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.
Guardado en:
Autores principales: | Nadin Ulrich, Kai-Uwe Goss, Andrea Ebert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Simple, Robust and Efficient Computational Method for n-Octanol/Water Partition Coefficients of Substituted Aromatic Drugs
por: Asrin Bahmani, et al.
Publicado: (2017) -
Octanol-assisted liposome assembly on chip
por: Siddharth Deshpande, et al.
Publicado: (2016) -
The Membrane-Water Partition Coefficients of Antifungal, but Not Antibacterial, Membrane-Active Compounds Are Similar
por: Pavel E. Volynsky, et al.
Publicado: (2021) -
COEFFICIENT PARTITION PREDICTION OF SATURATED MONOCARBOXYLIC ACIDS USING THE MOLECULAR DESCRIPTORS
por: Mohammaei,Fahimeh, et al.
Publicado: (2018) -
Solubility and Partition Coefficient of Salicylamide in Various pH Buffer Solutions
por: Dewi Isadiartuti, et al.
Publicado: (2021)