Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!