Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation

Deep neural networks are potent tools for computational chemistry, but experimental feed data can limit their reach. Here the authors develop deep neural network data augmentation models to predict octanol–water partition coefficients (log P) of a variety of tautomers.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Nadin Ulrich, Kai-Uwe Goss, Andrea Ebert
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/9d61fbcad06746a6a19e36cf2342853f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!