Constructing robust and efficient experimental designs in groundwater modeling using a Galerkin method, proper orthogonal decomposition, and metaheuristic algorithms.
Estimating parameters accurately in groundwater models for aquifers is challenging because the models are non-explicit solutions of complex partial differential equations. Modern research methods, such as Monte Carlo methods and metaheuristic algorithms, for searching an efficient design to estimate...
Guardado en:
Autores principales: | Timothy T Ushijima, William W G Yeh, Weng Kee Wong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d675399cb9a414e89916e385d28a01f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Thermal convection inside an oscillating cube analysed with proper orthogonal decomposition
por: Keisuke TATSUMOTO, et al.
Publicado: (2015) -
Flow Structures Identification through Proper Orthogonal Decomposition: The Flow around Two Distinct Cylinders
por: Ângela M. Ribau, et al.
Publicado: (2021) -
Metaheuristics for pharmacometrics
por: Seongho Kim, et al.
Publicado: (2021) -
Optimal operation of multi-reservoir systems: comparative study of three robust metaheuristic algorithms
por: Saeid Akbarifard, et al.
Publicado: (2021) -
Metaheuristic algorithm for ship routing and scheduling problems with time window
por: Khaled Alhamad, et al.
Publicado: (2019)