On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces

Abstract In this paper, based on some geometrical properties of CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces, for p ≥ 2 $p \geq 2$ , we obtain two fixed point results for monotone multivalued nonexpansive mappings and proximally monotone nonexpansive mappings. Which under some assumptions, reduce...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sami Shukri
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2020
Materias:
Acceso en línea:https://doaj.org/article/9d782a7047444b16a5797f1bd639a008
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9d782a7047444b16a5797f1bd639a008
record_format dspace
spelling oai:doaj.org-article:9d782a7047444b16a5797f1bd639a0082021-12-02T12:08:32ZOn monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces10.1186/s13663-020-00675-z1687-1812https://doaj.org/article/9d782a7047444b16a5797f1bd639a0082020-07-01T00:00:00Zhttp://link.springer.com/article/10.1186/s13663-020-00675-zhttps://doaj.org/toc/1687-1812Abstract In this paper, based on some geometrical properties of CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces, for p ≥ 2 $p \geq 2$ , we obtain two fixed point results for monotone multivalued nonexpansive mappings and proximally monotone nonexpansive mappings. Which under some assumptions, reduce to coincide and generalize a fixed point result for monotone nonexpansive mappings. This work is a continuity of the previous work of Ran and Reurings, Nieto and Rodríguez-López done for monotone contraction mappings.Sami ShukriSpringerOpenarticleFixed pointsBest proximity pointsCAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spacesPartial orderContraction mappingsNonexpansive mappingsApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2020, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Fixed points
Best proximity points
CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
Partial order
Contraction mappings
Nonexpansive mappings
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Fixed points
Best proximity points
CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
Partial order
Contraction mappings
Nonexpansive mappings
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Sami Shukri
On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
description Abstract In this paper, based on some geometrical properties of CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces, for p ≥ 2 $p \geq 2$ , we obtain two fixed point results for monotone multivalued nonexpansive mappings and proximally monotone nonexpansive mappings. Which under some assumptions, reduce to coincide and generalize a fixed point result for monotone nonexpansive mappings. This work is a continuity of the previous work of Ran and Reurings, Nieto and Rodríguez-López done for monotone contraction mappings.
format article
author Sami Shukri
author_facet Sami Shukri
author_sort Sami Shukri
title On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
title_short On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
title_full On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
title_fullStr On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
title_full_unstemmed On monotone nonexpansive mappings in CAT p ( 0 ) $\operatorname{CAT}_{p}(0)$ spaces
title_sort on monotone nonexpansive mappings in cat p ( 0 ) $\operatorname{cat}_{p}(0)$ spaces
publisher SpringerOpen
publishDate 2020
url https://doaj.org/article/9d782a7047444b16a5797f1bd639a008
work_keys_str_mv AT samishukri onmonotonenonexpansivemappingsincatp0operatornamecatp0spaces
_version_ 1718394704910876672