A deep-learning model for predictive archaeology and archaeological community detection
Abstract Deep learning is a powerful tool for exploring large datasets and discovering new patterns. This work presents an account of a metric learning-based deep convolutional neural network (CNN) applied to an archaeological dataset. The proposed account speaks of three stages: training, testing/v...
Enregistré dans:
Auteurs principaux: | Abraham Resler, Reuven Yeshurun, Filipe Natalio, Raja Giryes |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Springer Nature
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9d943c62d5c046279d89872e62d1ab2c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting Chinese University Students’ E-Learning Acceptance and Self-Regulation in Online English Courses: Evidence From Emergency Remote Teaching (ERT) During COVID-19
par: Sijing Zhou, et autres
Publié: (2021) -
Factors Engaging College Students in Online Learning: An Investigation of Learning Stickiness
par: Aixia Li, et autres
Publié: (2021) -
Entrevista com Stuart Hall.
par: Heloisa Buarque de Holanda, et autres
Publié: (2013) -
Apresentação
par: Gerson Rodrigues de Albuquerque
Publié: (2013) -
APRESENTAÇÃO
par: Gerson Rodrigues de Albuquerque
Publié: (2015)