Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies
ABSTRACT Free fatty acids hold important immune-modulatory roles during infection. However, the host’s long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid ar...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d970be129be462eb8daae5917e68e67 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9d970be129be462eb8daae5917e68e67 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9d970be129be462eb8daae5917e68e672021-11-15T15:55:14ZIdentification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies10.1128/mBio.02056-182150-7511https://doaj.org/article/9d970be129be462eb8daae5917e68e672019-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02056-18https://doaj.org/toc/2150-7511ABSTRACT Free fatty acids hold important immune-modulatory roles during infection. However, the host’s long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid arachidonic acid (AA) and the omega-3 fatty acid decosahexaenoic acid (DHA) are highly abundant; hence, we investigated their effects on the multidrug-resistant human pathogen Acinetobacter baumannii. Our analyses reveal that AA and DHA incorporate into the A. baumannii bacterial membrane and impact bacterial fitness and membrane integrity, with DHA having a more pronounced effect. Through transcriptional profiling and mutant analyses, we show that the A. baumannii β-oxidation pathway plays a protective role against AA and DHA, by limiting their incorporation into the phospholipids of the bacterial membrane. Furthermore, our study identified a second bacterial membrane protection system mediated by the AdeIJK efflux system, which modulates the lipid content of the membrane via direct efflux of lipids other than AA and DHA, thereby providing a novel function for this major efflux system in A. baumannii. This is the first study to examine the antimicrobial effects of host fatty acids on A. baumannii and highlights the potential of AA and DHA to protect against A. baumannii infections. IMPORTANCE A shift in the Western diet since the industrial revolution has resulted in a dramatic increase in the consumption of omega-6 fatty acids, with a concurrent decrease in the consumption of omega-3 fatty acids. This decrease in omega-3 fatty acid consumption has been associated with significant disease burden, including increased susceptibility to infectious diseases. Here we provide evidence that DHA, an omega-3 fatty acid, has superior antimicrobial effects upon the highly drug-resistant pathogen Acinetobacter baumannii, thereby providing insights into one of the potential health benefits of omega-3 fatty acids. The identification and characterization of two novel bacterial membrane protective mechanisms against host fatty acids provide important insights into A. baumannii adaptation during disease. Furthermore, we describe a novel role for the major multidrug efflux system AdeIJK in A. baumannii membrane maintenance and lipid transport. This core function, beyond drug efflux, increases the appeal of AdeIJK as a therapeutic target.Jhih-Hang JiangKarl A. HassanStephanie L. BeggThusitha W. T. RupasingheVarsha NaiduVictoria G. PederickMarjan KhorvashJonathan J. WhittallJames C. PatonIan T. PaulsenChristopher A. McDevittAnton Y. PelegBart A. EijkelkampAmerican Society for MicrobiologyarticleAdeIJKantimicrobial host lipidsRND effluxβ-oxidationfree fatty acidslipidomicsMicrobiologyQR1-502ENmBio, Vol 10, Iss 1 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
AdeIJK antimicrobial host lipids RND efflux β-oxidation free fatty acids lipidomics Microbiology QR1-502 |
spellingShingle |
AdeIJK antimicrobial host lipids RND efflux β-oxidation free fatty acids lipidomics Microbiology QR1-502 Jhih-Hang Jiang Karl A. Hassan Stephanie L. Begg Thusitha W. T. Rupasinghe Varsha Naidu Victoria G. Pederick Marjan Khorvash Jonathan J. Whittall James C. Paton Ian T. Paulsen Christopher A. McDevitt Anton Y. Peleg Bart A. Eijkelkamp Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies |
description |
ABSTRACT Free fatty acids hold important immune-modulatory roles during infection. However, the host’s long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid arachidonic acid (AA) and the omega-3 fatty acid decosahexaenoic acid (DHA) are highly abundant; hence, we investigated their effects on the multidrug-resistant human pathogen Acinetobacter baumannii. Our analyses reveal that AA and DHA incorporate into the A. baumannii bacterial membrane and impact bacterial fitness and membrane integrity, with DHA having a more pronounced effect. Through transcriptional profiling and mutant analyses, we show that the A. baumannii β-oxidation pathway plays a protective role against AA and DHA, by limiting their incorporation into the phospholipids of the bacterial membrane. Furthermore, our study identified a second bacterial membrane protection system mediated by the AdeIJK efflux system, which modulates the lipid content of the membrane via direct efflux of lipids other than AA and DHA, thereby providing a novel function for this major efflux system in A. baumannii. This is the first study to examine the antimicrobial effects of host fatty acids on A. baumannii and highlights the potential of AA and DHA to protect against A. baumannii infections. IMPORTANCE A shift in the Western diet since the industrial revolution has resulted in a dramatic increase in the consumption of omega-6 fatty acids, with a concurrent decrease in the consumption of omega-3 fatty acids. This decrease in omega-3 fatty acid consumption has been associated with significant disease burden, including increased susceptibility to infectious diseases. Here we provide evidence that DHA, an omega-3 fatty acid, has superior antimicrobial effects upon the highly drug-resistant pathogen Acinetobacter baumannii, thereby providing insights into one of the potential health benefits of omega-3 fatty acids. The identification and characterization of two novel bacterial membrane protective mechanisms against host fatty acids provide important insights into A. baumannii adaptation during disease. Furthermore, we describe a novel role for the major multidrug efflux system AdeIJK in A. baumannii membrane maintenance and lipid transport. This core function, beyond drug efflux, increases the appeal of AdeIJK as a therapeutic target. |
format |
article |
author |
Jhih-Hang Jiang Karl A. Hassan Stephanie L. Begg Thusitha W. T. Rupasinghe Varsha Naidu Victoria G. Pederick Marjan Khorvash Jonathan J. Whittall James C. Paton Ian T. Paulsen Christopher A. McDevitt Anton Y. Peleg Bart A. Eijkelkamp |
author_facet |
Jhih-Hang Jiang Karl A. Hassan Stephanie L. Begg Thusitha W. T. Rupasinghe Varsha Naidu Victoria G. Pederick Marjan Khorvash Jonathan J. Whittall James C. Paton Ian T. Paulsen Christopher A. McDevitt Anton Y. Peleg Bart A. Eijkelkamp |
author_sort |
Jhih-Hang Jiang |
title |
Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies |
title_short |
Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies |
title_full |
Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies |
title_fullStr |
Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies |
title_full_unstemmed |
Identification of Novel <italic toggle="yes">Acinetobacter baumannii</italic> Host Fatty Acid Stress Adaptation Strategies |
title_sort |
identification of novel <italic toggle="yes">acinetobacter baumannii</italic> host fatty acid stress adaptation strategies |
publisher |
American Society for Microbiology |
publishDate |
2019 |
url |
https://doaj.org/article/9d970be129be462eb8daae5917e68e67 |
work_keys_str_mv |
AT jhihhangjiang identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT karlahassan identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT stephanielbegg identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT thusithawtrupasinghe identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT varshanaidu identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT victoriagpederick identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT marjankhorvash identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT jonathanjwhittall identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT jamescpaton identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT iantpaulsen identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT christopheramcdevitt identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT antonypeleg identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies AT bartaeijkelkamp identificationofnovelitalictoggleyesacinetobacterbaumanniiitalichostfattyacidstressadaptationstrategies |
_version_ |
1718427234253930496 |