Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
Session-based recommendations aim to predict a user’s next click based on the user’s current and historical sessions, which can be applied to shopping websites and APPs. Existing session-based recommendation methods cannot accurately capture the complex transitions between items. In addition, some a...
Guardado en:
Autores principales: | Xiangde Zhang, Yuan Zhou, Jianping Wang, Xiaojun Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d9eb41812454a14a74fee1a87a7c478 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bert-Enhanced Text Graph Neural Network for Classification
por: Yiping Yang, et al.
Publicado: (2021) -
A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation
por: Guisheng Chen, et al.
Publicado: (2021) -
Inferring Users’ Social Roles with a Multi-Level Graph Neural Network Model
por: Chunrui Zhang, et al.
Publicado: (2021) -
A Hybrid-Preference Neural Model for Basket-Sensitive Item Recommendation
por: Zhiqiang Pan, et al.
Publicado: (2020) -
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
por: Taian Guo, et al.
Publicado: (2021)