Autoencoder based blind source separation for photoacoustic resolution enhancement
Abstract Photoacoustics is a promising technique for in-depth imaging of biological tissues. However, the lateral resolution of photoacoustic imaging is limited by size of the optical excitation spot, and therefore by light diffraction and scattering. Several super-resolution approaches, among which...
Enregistré dans:
Auteurs principaux: | Matan Benyamin, Hadar Genish, Ran Califa, Lauren Wolbromsky, Michal Ganani, Zhen Wang, Shuyun Zhou, Zheng Xie, Zeev Zalevsky |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9d9edd296157414cbb538a316af4d746 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Blind source separation by multilayer neural network classifiers for spectrogram analysis
par: Toshihiko SHIRAISHI, et autres
Publié: (2019) -
Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging
par: Fei Gao, et autres
Publié: (2017) -
A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
par: Huaqing Wang, et autres
Publié: (2014) -
Explore Protein Conformational Space With Variational Autoencoder
par: Hao Tian, et autres
Publié: (2021) -
Conditional Variational Autoencoder for Learned Image Reconstruction
par: Chen Zhang, et autres
Publié: (2021)