Autoencoder based blind source separation for photoacoustic resolution enhancement
Abstract Photoacoustics is a promising technique for in-depth imaging of biological tissues. However, the lateral resolution of photoacoustic imaging is limited by size of the optical excitation spot, and therefore by light diffraction and scattering. Several super-resolution approaches, among which...
Guardado en:
Autores principales: | Matan Benyamin, Hadar Genish, Ran Califa, Lauren Wolbromsky, Michal Ganani, Zhen Wang, Shuyun Zhou, Zheng Xie, Zeev Zalevsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9d9edd296157414cbb538a316af4d746 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Blind source separation by multilayer neural network classifiers for spectrogram analysis
por: Toshihiko SHIRAISHI, et al.
Publicado: (2019) -
Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging
por: Fei Gao, et al.
Publicado: (2017) -
A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
por: Huaqing Wang, et al.
Publicado: (2014) -
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
Conditional Variational Autoencoder for Learned Image Reconstruction
por: Chen Zhang, et al.
Publicado: (2021)