Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level
Existing methods for protein polymer engineering suffer from low efficiency especially for synthesis large size polyproteins. Here, Deng et al. construct homo-polymer and co-polymer up to decamer by stepwise ligation and cleavage validated by atomic force microscopy-based single-molecule force spect...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9da1a8ddd527406cab7cc9175b041dfa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Existing methods for protein polymer engineering suffer from low efficiency especially for synthesis large size polyproteins. Here, Deng et al. construct homo-polymer and co-polymer up to decamer by stepwise ligation and cleavage validated by atomic force microscopy-based single-molecule force spectroscopy. |
---|