Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
Hyperspectral unmixing (HU) has become an important technique in exploiting hyperspectral data since it decomposes a mixed pixel into a collection of endmembers weighted by fractional abundances. The endmembers of a hyperspectral image (HSI) are more likely to be generated by independent sources and...
Guardado en:
Autores principales: | E. M. M. B. Ekanayake, H. M. H. K. Weerasooriya, D. Y. L. Ranasinghe, S. Herath, B. Rathnayake, G. M. R. I. Godaliyadda, M. P. B. Ekanayake, H. M. V. R. Herath |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9da50be38a264431ad6d9883076df7be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Phenology and Spectral Unmixing-Based Invasive Kudzu Mapping: A Case Study in Knox County, Tennessee
por: Ming Shen, et al.
Publicado: (2021) -
Uncertainty Introduced by Darkening Agents in the Lunar Regolith: An Unmixing Perspective
por: Marcel Hess, et al.
Publicado: (2021) -
Coupling linear spectral unmixing and RUSLE2 to model soil erosion in the Boubo coastal watershed, Côte d'Ivoire
por: Lenikpoho Karim Coulibaly, et al.
Publicado: (2021) -
Proportion Estimation for Urban Mixed Scenes Based on Nonnegative Matrix Factorization for High-Spatial Resolution Remote Sensing Images
por: Qiqi Zhu, et al.
Publicado: (2021)