Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics

Abstract Rashba spin-orbit splitting in the magnetic materials opens up a new perspective in the field of spintronics. Here, we report a giant Rashba spin-orbit splitting on the PrGe [010] surface in the paramagnetic phase with Rashba coefficient α R  = 5 eVÅ. We find that α R can be tuned in this s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Soma Banik, Pranab Kumar Das, Azzedine Bendounan, Ivana Vobornik, A. Arya, Nathan Beaulieu, Jun Fujii, A. Thamizhavel, P. U. Sastry, A. K. Sinha, D. M. Phase, S. K. Deb
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9dc3a471241a4d608bde4bcb43f9fb43
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9dc3a471241a4d608bde4bcb43f9fb43
record_format dspace
spelling oai:doaj.org-article:9dc3a471241a4d608bde4bcb43f9fb432021-12-02T11:52:38ZGiant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics10.1038/s41598-017-02401-z2045-2322https://doaj.org/article/9dc3a471241a4d608bde4bcb43f9fb432017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02401-zhttps://doaj.org/toc/2045-2322Abstract Rashba spin-orbit splitting in the magnetic materials opens up a new perspective in the field of spintronics. Here, we report a giant Rashba spin-orbit splitting on the PrGe [010] surface in the paramagnetic phase with Rashba coefficient α R  = 5 eVÅ. We find that α R can be tuned in this system as a function of temperature at different magnetic phases. Rashba type spin polarized surface states originates due to the strong hybridization between Pr 4f states with the conduction electrons. Significant changes observed in the spin polarized surface states across the magnetic transitions are due to the competition between Dzyaloshinsky-Moriya interaction and exchange interaction present in this system. Presence of Dzyaloshinsky-Moriya interaction on the topological surface give rise to Saddle point singularity which leads to electron-like and hole-like Rashba spin split bands in the $$\bar{{\boldsymbol{Z}}}^{\prime} -\bar{{\boldsymbol{\Gamma }}}-\bar{{\boldsymbol{Z}}}$$ Z ¯ ′ − Γ ¯ − Z ¯ and $$\bar{{\boldsymbol{X}}}^{\prime} -\bar{{\boldsymbol{\Gamma }}}-\bar{{\boldsymbol{X}}}$$ X ¯ ′ − Γ ¯ − X ¯ directions, respectively. Supporting evidences of Dzyaloshinsky-Moriya interaction have been obtained as anisotropic magnetoresistance with respect to field direction and first-order type hysteresis in the X-ray diffraction measurements. A giant negative magnetoresistance of 43% in the antiferromagnetic phase and tunable Rashba parameter with temperature makes this material a suitable candidate for application in the antiferromagnetic spintronic devices.Soma BanikPranab Kumar DasAzzedine BendounanIvana VobornikA. AryaNathan BeaulieuJun FujiiA. ThamizhavelP. U. SastryA. K. SinhaD. M. PhaseS. K. DebNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Soma Banik
Pranab Kumar Das
Azzedine Bendounan
Ivana Vobornik
A. Arya
Nathan Beaulieu
Jun Fujii
A. Thamizhavel
P. U. Sastry
A. K. Sinha
D. M. Phase
S. K. Deb
Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics
description Abstract Rashba spin-orbit splitting in the magnetic materials opens up a new perspective in the field of spintronics. Here, we report a giant Rashba spin-orbit splitting on the PrGe [010] surface in the paramagnetic phase with Rashba coefficient α R  = 5 eVÅ. We find that α R can be tuned in this system as a function of temperature at different magnetic phases. Rashba type spin polarized surface states originates due to the strong hybridization between Pr 4f states with the conduction electrons. Significant changes observed in the spin polarized surface states across the magnetic transitions are due to the competition between Dzyaloshinsky-Moriya interaction and exchange interaction present in this system. Presence of Dzyaloshinsky-Moriya interaction on the topological surface give rise to Saddle point singularity which leads to electron-like and hole-like Rashba spin split bands in the $$\bar{{\boldsymbol{Z}}}^{\prime} -\bar{{\boldsymbol{\Gamma }}}-\bar{{\boldsymbol{Z}}}$$ Z ¯ ′ − Γ ¯ − Z ¯ and $$\bar{{\boldsymbol{X}}}^{\prime} -\bar{{\boldsymbol{\Gamma }}}-\bar{{\boldsymbol{X}}}$$ X ¯ ′ − Γ ¯ − X ¯ directions, respectively. Supporting evidences of Dzyaloshinsky-Moriya interaction have been obtained as anisotropic magnetoresistance with respect to field direction and first-order type hysteresis in the X-ray diffraction measurements. A giant negative magnetoresistance of 43% in the antiferromagnetic phase and tunable Rashba parameter with temperature makes this material a suitable candidate for application in the antiferromagnetic spintronic devices.
format article
author Soma Banik
Pranab Kumar Das
Azzedine Bendounan
Ivana Vobornik
A. Arya
Nathan Beaulieu
Jun Fujii
A. Thamizhavel
P. U. Sastry
A. K. Sinha
D. M. Phase
S. K. Deb
author_facet Soma Banik
Pranab Kumar Das
Azzedine Bendounan
Ivana Vobornik
A. Arya
Nathan Beaulieu
Jun Fujii
A. Thamizhavel
P. U. Sastry
A. K. Sinha
D. M. Phase
S. K. Deb
author_sort Soma Banik
title Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics
title_short Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics
title_full Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics
title_fullStr Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics
title_full_unstemmed Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics
title_sort giant rashba effect at the topological surface of prge revealing antiferromagnetic spintronics
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/9dc3a471241a4d608bde4bcb43f9fb43
work_keys_str_mv AT somabanik giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT pranabkumardas giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT azzedinebendounan giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT ivanavobornik giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT aarya giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT nathanbeaulieu giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT junfujii giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT athamizhavel giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT pusastry giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT aksinha giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT dmphase giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
AT skdeb giantrashbaeffectatthetopologicalsurfaceofprgerevealingantiferromagneticspintronics
_version_ 1718394999804002304