Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery
Solid polymer electrolytes are promising candidates for implementation in next-generation all-solid-state batteries (ASSBs) which could replace conventional batteries used today. However, the materialization of ASSBs on a mass scale is restricted by the low ionic conductivity and high interfacial re...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9dc71287ba22405da241a6f3304fc5ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Solid polymer electrolytes are promising candidates for implementation in next-generation all-solid-state batteries (ASSBs) which could replace conventional batteries used today. However, the materialization of ASSBs on a mass scale is restricted by the low ionic conductivity and high interfacial resistance of solid electrolytes. In this work, succinonitrile (SN) with lithium (trifluoromethylsulphonyl)imide (LiTFSI) and Al-doped Li7La3Zr2O12 (Al-LLZO) nanoparticles were used to improve the ionic conductivity of a polyethylene oxide-based composite electrolyte. The Al-LLZO nanoparticles were synthesized by a facile synthesis process at low temperatures, which contributed to an enhancement in the ionic conductivity. A solid polymer electrolyte with 7.5 wt% of Al-LLZO and 15 wt% of SN achieved a high ionic conductivity of 4.17 × 10−4 Scm−1 at room temperature and a large value of 0.451 for the lithium-ion transport number at 60 °C. By adding 10 wt% SN and 10 wt% of Al-LLZO in the LiFePO4 cathode, the cell could operate at 25 °C with a specific capacity of 130 mAh g−1 and 89% capacity retention after 200 cycles at current density of 20 mA g−1. This study therefore proposes a solution to improve the ionic conductivity of solid polymer electrolytes in all-solid-state batteries. |
---|