Phase transition mechanism and bandgap engineering of Sb2S3 at gigapascal pressures
Antimonite (Sb2S3) has potential applications for solar energy, but how its layered structure changes under pressure is incompletely understood. Here diamond anvil cell experiments supported by first principles calculations offer a structural explanation for experimentally observed phase transitions...
Guardado en:
Autores principales: | Zhongxun Cui, Kejun Bu, Yukai Zhuang, Mary-Ellen Donnelly, Dongzhou Zhang, Philip Dalladay-Simpson, Ross T. Howie, Jiandong Zhang, Xujie Lü, Qingyang Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9dc93019a2774cc8a2d6d21c0dcde095 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions
por: Miriam Peña-Alvarez, et al.
Publicado: (2021) -
High Hole Mobility and Low Leakage Thin-Body (In)GaSb p-MOSFETs Grown on High-Bandgap AlGaSb
por: Sang-Hyeon Kim, et al.
Publicado: (2021) -
Band gap closure, incommensurability and molecular dissociation of dense chlorine
por: Philip Dalladay-Simpson, et al.
Publicado: (2019) -
Author Correction: Band gap closure, incommensurability and molecular dissociation of dense chlorine
por: Philip Dalladay-Simpson, et al.
Publicado: (2019) -
Rapid Acquisition of Gigapascal-High-Pressure Resistance by <named-content content-type="genus-species">Escherichia coli</named-content>
por: Dietrich Vanlint, et al.
Publicado: (2011)