Spatiotemporal data analysis with chronological networks

Extracting central information from ever-growing data generated in our lives calls for new data mining methods. Ferreira et al. show a simple model, called chronnets, that can capture frequent patterns, spatial changes, outliers, and spatiotemporal clusters.

Guardado en:
Detalles Bibliográficos
Autores principales: Leonardo N. Ferreira, Didier A. Vega-Oliveros, Moshé Cotacallapa, Manoel F. Cardoso, Marcos G. Quiles, Liang Zhao, Elbert E. N. Macau
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/9df80fdfab9a4761a69dd016cbd31c3f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9df80fdfab9a4761a69dd016cbd31c3f
record_format dspace
spelling oai:doaj.org-article:9df80fdfab9a4761a69dd016cbd31c3f2021-12-02T18:50:45ZSpatiotemporal data analysis with chronological networks10.1038/s41467-020-17634-22041-1723https://doaj.org/article/9df80fdfab9a4761a69dd016cbd31c3f2020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17634-2https://doaj.org/toc/2041-1723Extracting central information from ever-growing data generated in our lives calls for new data mining methods. Ferreira et al. show a simple model, called chronnets, that can capture frequent patterns, spatial changes, outliers, and spatiotemporal clusters.Leonardo N. FerreiraDidier A. Vega-OliverosMoshé CotacallapaManoel F. CardosoMarcos G. QuilesLiang ZhaoElbert E. N. MacauNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Leonardo N. Ferreira
Didier A. Vega-Oliveros
Moshé Cotacallapa
Manoel F. Cardoso
Marcos G. Quiles
Liang Zhao
Elbert E. N. Macau
Spatiotemporal data analysis with chronological networks
description Extracting central information from ever-growing data generated in our lives calls for new data mining methods. Ferreira et al. show a simple model, called chronnets, that can capture frequent patterns, spatial changes, outliers, and spatiotemporal clusters.
format article
author Leonardo N. Ferreira
Didier A. Vega-Oliveros
Moshé Cotacallapa
Manoel F. Cardoso
Marcos G. Quiles
Liang Zhao
Elbert E. N. Macau
author_facet Leonardo N. Ferreira
Didier A. Vega-Oliveros
Moshé Cotacallapa
Manoel F. Cardoso
Marcos G. Quiles
Liang Zhao
Elbert E. N. Macau
author_sort Leonardo N. Ferreira
title Spatiotemporal data analysis with chronological networks
title_short Spatiotemporal data analysis with chronological networks
title_full Spatiotemporal data analysis with chronological networks
title_fullStr Spatiotemporal data analysis with chronological networks
title_full_unstemmed Spatiotemporal data analysis with chronological networks
title_sort spatiotemporal data analysis with chronological networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/9df80fdfab9a4761a69dd016cbd31c3f
work_keys_str_mv AT leonardonferreira spatiotemporaldataanalysiswithchronologicalnetworks
AT didieravegaoliveros spatiotemporaldataanalysiswithchronologicalnetworks
AT moshecotacallapa spatiotemporaldataanalysiswithchronologicalnetworks
AT manoelfcardoso spatiotemporaldataanalysiswithchronologicalnetworks
AT marcosgquiles spatiotemporaldataanalysiswithchronologicalnetworks
AT liangzhao spatiotemporaldataanalysiswithchronologicalnetworks
AT elbertenmacau spatiotemporaldataanalysiswithchronologicalnetworks
_version_ 1718377521268916224