A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy

Transthyretin amyloid cardiomyopathy is a treatable but often unrecognized cause of heart failure. We derived and validated a machine learning model based on medical diagnostic codes that identifies heart failure patients at risk for wild-type transthyretin amyloid cardiomyopathy.

Guardado en:
Detalles Bibliográficos
Autores principales: Ahsan Huda, Adam Castaño, Anindita Niyogi, Jennifer Schumacher, Michelle Stewart, Marianna Bruno, Mo Hu, Faraz S. Ahmad, Rahul C. Deo, Sanjiv J. Shah
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9df90401b120477884a567e3e9520657
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9df90401b120477884a567e3e9520657
record_format dspace
spelling oai:doaj.org-article:9df90401b120477884a567e3e95206572021-12-02T15:36:29ZA machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy10.1038/s41467-021-22876-92041-1723https://doaj.org/article/9df90401b120477884a567e3e95206572021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22876-9https://doaj.org/toc/2041-1723Transthyretin amyloid cardiomyopathy is a treatable but often unrecognized cause of heart failure. We derived and validated a machine learning model based on medical diagnostic codes that identifies heart failure patients at risk for wild-type transthyretin amyloid cardiomyopathy.Ahsan HudaAdam CastañoAnindita NiyogiJennifer SchumacherMichelle StewartMarianna BrunoMo HuFaraz S. AhmadRahul C. DeoSanjiv J. ShahNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ahsan Huda
Adam Castaño
Anindita Niyogi
Jennifer Schumacher
Michelle Stewart
Marianna Bruno
Mo Hu
Faraz S. Ahmad
Rahul C. Deo
Sanjiv J. Shah
A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
description Transthyretin amyloid cardiomyopathy is a treatable but often unrecognized cause of heart failure. We derived and validated a machine learning model based on medical diagnostic codes that identifies heart failure patients at risk for wild-type transthyretin amyloid cardiomyopathy.
format article
author Ahsan Huda
Adam Castaño
Anindita Niyogi
Jennifer Schumacher
Michelle Stewart
Marianna Bruno
Mo Hu
Faraz S. Ahmad
Rahul C. Deo
Sanjiv J. Shah
author_facet Ahsan Huda
Adam Castaño
Anindita Niyogi
Jennifer Schumacher
Michelle Stewart
Marianna Bruno
Mo Hu
Faraz S. Ahmad
Rahul C. Deo
Sanjiv J. Shah
author_sort Ahsan Huda
title A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
title_short A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
title_full A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
title_fullStr A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
title_full_unstemmed A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
title_sort machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9df90401b120477884a567e3e9520657
work_keys_str_mv AT ahsanhuda amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT adamcastano amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT aninditaniyogi amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT jenniferschumacher amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT michellestewart amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT mariannabruno amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT mohu amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT farazsahmad amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT rahulcdeo amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT sanjivjshah amachinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT ahsanhuda machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT adamcastano machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT aninditaniyogi machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT jenniferschumacher machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT michellestewart machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT mariannabruno machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT mohu machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT farazsahmad machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT rahulcdeo machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
AT sanjivjshah machinelearningmodelforidentifyingpatientsatriskforwildtypetransthyretinamyloidcardiomyopathy
_version_ 1718386306013200384