A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
Transthyretin amyloid cardiomyopathy is a treatable but often unrecognized cause of heart failure. We derived and validated a machine learning model based on medical diagnostic codes that identifies heart failure patients at risk for wild-type transthyretin amyloid cardiomyopathy.
Guardado en:
Autores principales: | Ahsan Huda, Adam Castaño, Anindita Niyogi, Jennifer Schumacher, Michelle Stewart, Marianna Bruno, Mo Hu, Faraz S. Ahmad, Rahul C. Deo, Sanjiv J. Shah |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9df90401b120477884a567e3e9520657 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nationwide prevalence and characteristics of transthyretin amyloid cardiomyopathy in Sweden
por: J Gustav Smith, et al.
Publicado: (2021) -
Stochastic master equation for early protein aggregation in the transthyretin amyloid disease
por: Ruo-Nan Liu, et al.
Publicado: (2020) -
A human antibody selective for transthyretin amyloid removes cardiac amyloid through phagocytic immune cells
por: Aubin Michalon, et al.
Publicado: (2021) -
Inflammatory state exists in familial amyloid polyneuropathy that may be triggered by mutated transthyretin
por: Genki Suenaga, et al.
Publicado: (2017) -
Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptide and High-Sensitivity Troponin T Levels in the Natural History of Transthyretin Amyloid Cardiomyopathy and Their Evolution after Tafamidis Treatment
por: Silvia Oghina, et al.
Publicado: (2021)