Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>&...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9dfd0714cb2449338b8de119c7cdd8ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation. |
---|