Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV

In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>&...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad Marashdeh, Ibrahim F. Al-Hamarneh
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/9dfd0714cb2449338b8de119c7cdd8ba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9dfd0714cb2449338b8de119c7cdd8ba
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic surgical stainless steel
mass attenuation coefficient
WinXCOM
half-value layer
X-ray fluorescence
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
spellingShingle surgical stainless steel
mass attenuation coefficient
WinXCOM
half-value layer
X-ray fluorescence
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Mohammad Marashdeh
Ibrahim F. Al-Hamarneh
Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
description In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation.
format article
author Mohammad Marashdeh
Ibrahim F. Al-Hamarneh
author_facet Mohammad Marashdeh
Ibrahim F. Al-Hamarneh
author_sort Mohammad Marashdeh
title Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_short Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_full Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_fullStr Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_full_unstemmed Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
title_sort evaluation of gamma radiation properties of four types of surgical stainless steel in the energy range of 17.50–25.29 kev
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/9dfd0714cb2449338b8de119c7cdd8ba
work_keys_str_mv AT mohammadmarashdeh evaluationofgammaradiationpropertiesoffourtypesofsurgicalstainlesssteelintheenergyrangeof17502529kev
AT ibrahimfalhamarneh evaluationofgammaradiationpropertiesoffourtypesofsurgicalstainlesssteelintheenergyrangeof17502529kev
_version_ 1718411454452858880
spelling oai:doaj.org-article:9dfd0714cb2449338b8de119c7cdd8ba2021-11-25T18:14:21ZEvaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV10.3390/ma142268731996-1944https://doaj.org/article/9dfd0714cb2449338b8de119c7cdd8ba2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6873https://doaj.org/toc/1996-1944In this study, the gamma radiation properties of four types of surgical-grade stainless steel (304, 304L, 316 and 316L) were investigated. The effective atomic number Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>, effective electron density N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and half-value layer (HVL) of four types of surgical-grade stainless steel were determined via the mass attenuation coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>μ</mi><mo>/</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> coefficients were determined experimentally using an X-ray fluorescence (XRF) technique and theoretically via the WinXCOM program. The K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>α</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> of XRF photons in the energy range between 17.50 and 25.29 keV was used from pure metal plates of molybdenum (Mo), palladium (Pd), silver (Ag) and tin (Sn). A comparison between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> revealed that the experimental values were lower than the theoretical calculations. The relative differences between the theoretical and experimental values were found to decrease with increasing photon energy. The lowest percentage difference between the experimental and theoretical values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> was between −6.17% and −9.76% and was obtained at a photon energy of 25.29 keV. Sample 316L showed the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula> at the energies 21.20, 22.19 and 25.29 keV. In addition, the measured results of Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> for all samples behaved similarly in the given energy range and were found to be in good agreement with the calculations. The equivalent atomic number (Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula>) of the investigated stainless-steel samples was calculated using the interpolation method to compare the samples at the same source energy. The 316L stainless steel had higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>/</mo><mi>ρ</mi></mrow></semantics></math></inline-formula>, Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></semantics></math></inline-formula> and Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>e</mi><mi>q</mi></mrow></msub></semantics></math></inline-formula> and lower values of HVL compared with the other samples. Therefore, it is concluded that the 316L sample is more effective in absorbing gamma radiation.Mohammad MarashdehIbrahim F. Al-HamarnehMDPI AGarticlesurgical stainless steelmass attenuation coefficientWinXCOMhalf-value layerX-ray fluorescenceTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6873, p 6873 (2021)