Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics

Abhimanyu Thakur,1 Rakesh Kumar Sidu,1 Heng Zou,2 Md Kowsar Alam,2 Mengsu Yang,2 Youngjin Lee1 1Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; 2Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SARCorrespondence: Youngjin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thakur A, Sidu RK, Zou H, Alam MK, Yang M, Lee Y
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/9e04c2cfaf254b13b0ba0ab8bc9f1acd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9e04c2cfaf254b13b0ba0ab8bc9f1acd
record_format dspace
spelling oai:doaj.org-article:9e04c2cfaf254b13b0ba0ab8bc9f1acd2021-12-02T11:06:48ZInhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics1178-2013https://doaj.org/article/9e04c2cfaf254b13b0ba0ab8bc9f1acd2020-10-01T00:00:00Zhttps://www.dovepress.com/inhibition-of-glioma-cellsrsquo-proliferation-by-doxorubicin-loaded-ex-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Abhimanyu Thakur,1 Rakesh Kumar Sidu,1 Heng Zou,2 Md Kowsar Alam,2 Mengsu Yang,2 Youngjin Lee1 1Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; 2Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SARCorrespondence: Youngjin LeeDepartment of Neuroscience, City University of Hong Kong, Yuen Building, City University of Hong Kong 83, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR Tel +852-3442-4313Fax +852-3442-0549Email younglee@cityu.edu.hkBackground: Malignant glioma is a fatal brain cancer. Accumulated evidence has demonstrated that exosomes can cross the blood–brain barrier (BBB), suggesting their potential use as drug delivery vehicles to glioma. Therefore, various loading methods of anticancer agents into exosomes have been developed. However, the loading efficiency of anticancer drugs, such as doxorubicin (DOX) and paclitaxel (PTX), into exosomes is relatively low, thus challenging to improve the drug delivery efficiency to glioma cells (GMs) via exosomes.Methods: To improve the loading efficiency of doxorubicin into exosomes, a microfluidic device (Exo-Load) was developed. Next, to increase the exosomal delivery of doxorubicin to GMs, autologous exosomes were used for its loading via Exo-Load. Briefly, exosomes from SF7761 stem cells-like- and U251-GMs were isolated and characterized by nano-tracking analysis (NTA), transmission electron microscopy (TEM), and immunogold EM. Finally, doxorubicin was successfully loaded into exosomes with saponin by Exo-Load, and the uptake and functionality of doxorubicin-loaded exosomes for parent GMs were evaluated.Results: The loading efficiency of DOX into SF7761 stem cells-like- and U251-GMs-derived-exosomes were 19.7% and 7.86% via Exo-Load at the injection flow rate of 50 μL/min, respectively. Interestingly, the loading efficiency of DOX into U251 GMs-derived exosomes was significantly improved to 31.98% by a sigmoid type of Exo-Load at the injection flow rate of 12.5 μL/min. Importantly, DOX-loaded GMs-derived exosomes via Exo-Load inhibited parent GMs’ proliferation more than heterologous GMs, supporting exosomes’ homing effect.Conclusion: This study revealed that DOX and PTX could be loaded in exosomes via Exo-Load, demonstrating that Exo-Load could be a potential drug-loading device into exosomes with further optimization. This study also demonstrated that the delivery of DOX to SF7761 GMs via their daughter exosomes was much more efficient rather than U251 GMs-derived exosomes, supporting that the use of autologous exosomes could be better for glioma drug targeting.Keywords: glioma cells, exosomes, drug loading, microfluidics, doxorubicin, paclitaxelThakur ASidu RKZou HAlam MKYang MLee YDove Medical Pressarticleglioma cellsexosomesdrug loadingmicrofluidicsdoxorubicinand paclitaxel.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 8331-8343 (2020)
institution DOAJ
collection DOAJ
language EN
topic glioma cells
exosomes
drug loading
microfluidics
doxorubicin
and paclitaxel.
Medicine (General)
R5-920
spellingShingle glioma cells
exosomes
drug loading
microfluidics
doxorubicin
and paclitaxel.
Medicine (General)
R5-920
Thakur A
Sidu RK
Zou H
Alam MK
Yang M
Lee Y
Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics
description Abhimanyu Thakur,1 Rakesh Kumar Sidu,1 Heng Zou,2 Md Kowsar Alam,2 Mengsu Yang,2 Youngjin Lee1 1Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; 2Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SARCorrespondence: Youngjin LeeDepartment of Neuroscience, City University of Hong Kong, Yuen Building, City University of Hong Kong 83, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR Tel +852-3442-4313Fax +852-3442-0549Email younglee@cityu.edu.hkBackground: Malignant glioma is a fatal brain cancer. Accumulated evidence has demonstrated that exosomes can cross the blood–brain barrier (BBB), suggesting their potential use as drug delivery vehicles to glioma. Therefore, various loading methods of anticancer agents into exosomes have been developed. However, the loading efficiency of anticancer drugs, such as doxorubicin (DOX) and paclitaxel (PTX), into exosomes is relatively low, thus challenging to improve the drug delivery efficiency to glioma cells (GMs) via exosomes.Methods: To improve the loading efficiency of doxorubicin into exosomes, a microfluidic device (Exo-Load) was developed. Next, to increase the exosomal delivery of doxorubicin to GMs, autologous exosomes were used for its loading via Exo-Load. Briefly, exosomes from SF7761 stem cells-like- and U251-GMs were isolated and characterized by nano-tracking analysis (NTA), transmission electron microscopy (TEM), and immunogold EM. Finally, doxorubicin was successfully loaded into exosomes with saponin by Exo-Load, and the uptake and functionality of doxorubicin-loaded exosomes for parent GMs were evaluated.Results: The loading efficiency of DOX into SF7761 stem cells-like- and U251-GMs-derived-exosomes were 19.7% and 7.86% via Exo-Load at the injection flow rate of 50 μL/min, respectively. Interestingly, the loading efficiency of DOX into U251 GMs-derived exosomes was significantly improved to 31.98% by a sigmoid type of Exo-Load at the injection flow rate of 12.5 μL/min. Importantly, DOX-loaded GMs-derived exosomes via Exo-Load inhibited parent GMs’ proliferation more than heterologous GMs, supporting exosomes’ homing effect.Conclusion: This study revealed that DOX and PTX could be loaded in exosomes via Exo-Load, demonstrating that Exo-Load could be a potential drug-loading device into exosomes with further optimization. This study also demonstrated that the delivery of DOX to SF7761 GMs via their daughter exosomes was much more efficient rather than U251 GMs-derived exosomes, supporting that the use of autologous exosomes could be better for glioma drug targeting.Keywords: glioma cells, exosomes, drug loading, microfluidics, doxorubicin, paclitaxel
format article
author Thakur A
Sidu RK
Zou H
Alam MK
Yang M
Lee Y
author_facet Thakur A
Sidu RK
Zou H
Alam MK
Yang M
Lee Y
author_sort Thakur A
title Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics
title_short Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics
title_full Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics
title_fullStr Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics
title_full_unstemmed Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics
title_sort inhibition of glioma cells’ proliferation by doxorubicin-loaded exosomes via microfluidics
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/9e04c2cfaf254b13b0ba0ab8bc9f1acd
work_keys_str_mv AT thakura inhibitionofgliomacellsrsquoproliferationbydoxorubicinloadedexosomesviamicrofluidics
AT sidurk inhibitionofgliomacellsrsquoproliferationbydoxorubicinloadedexosomesviamicrofluidics
AT zouh inhibitionofgliomacellsrsquoproliferationbydoxorubicinloadedexosomesviamicrofluidics
AT alammk inhibitionofgliomacellsrsquoproliferationbydoxorubicinloadedexosomesviamicrofluidics
AT yangm inhibitionofgliomacellsrsquoproliferationbydoxorubicinloadedexosomesviamicrofluidics
AT leey inhibitionofgliomacellsrsquoproliferationbydoxorubicinloadedexosomesviamicrofluidics
_version_ 1718396235247779840