Graphical Optimization Method for Symmetrical Bidirectional Corridor Progression

The graphical progression method can obtain grand coordinated schemes with minimal computational complexity. However, there is no standardized solution for this method, and only a few related studies have been found thus far. Therefore, based on the in-depth discussion of the graphical optimization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kai Lu, Shuyan Jiang, Yiming Zhao, Yongjie Lin, Yinhai Wang
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/9e087d7802194c49a0eb6c7c937ce154
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The graphical progression method can obtain grand coordinated schemes with minimal computational complexity. However, there is no standardized solution for this method, and only a few related studies have been found thus far. Therefore, based on the in-depth discussion of the graphical optimization theory mechanism, a process-oriented and high-efficiency graphical method for symmetrical bidirectional corridor progression is proposed in this study. A two-round rotation transformation optimization process of the progression trajectory characteristic lines (PTC lines) is innovatively proposed. By establishing the updated judgment criteria for coordinated mode, the first round of PTC line rotation transformation realizes the optimization of coordinated modes and initial offsets. Giving the conditions for stopping rotation transformation and determining rotation points, rotation directions, and rotation angles, the second round of PTC line rotation transformation achieves the final optimization of the common signal cycle and offsets. The case study shows that the proposed graphical method can obtain the optimal progression effect through regular graphing and solving, although it can also be solved by highly efficient programming.