Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks
Atrial fibrillation (AF) is a type of cardiac arrhythmia affecting millions of people every year. This disease increases the likelihood of strokes, heart failure, and even death. While dedicated medical-grade electrocardiogram (ECG) devices can enable gold-standard analysis, these devices are expens...
Guardado en:
Autores principales: | Jayroop Ramesh, Zahra Solatidehkordi, Raafat Aburukba, Assim Sagahyroon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e1fbb2eb0884ead84f1122170641e29 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Review of Deep Learning-Based Atrial Fibrillation Detection Studies
por: Fatma Murat, et al.
Publicado: (2021) -
Brief Review on Electrocardiogram Analysis and Classification Techniques with Machine Learning Approaches
por: Pedro Henrique Borghi de Melo
Publicado: (2021) -
Towards Validating the Effectiveness of Obstructive Sleep Apnea Classification from Electronic Health Records Using Machine Learning
por: Jayroop Ramesh, et al.
Publicado: (2021) -
Quantification of Interpatient 12-lead ECG Variabilities within a Healthy Cohort
por: Nagel Claudia, et al.
Publicado: (2020) -
Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Laila Muizniece, et al.
Publicado: (2021)