MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
Supervised learning techniques are at the center of many tasks in remote sensing. Unfortunately, these methods, especially recent deep learning methods, often require large amounts of labeled data for training. Even though satellites acquire large amounts of data, labeling the data is often tedious,...
Guardado en:
Autores principales: | Pablo Gomez, Gabriele Meoni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e2ab79646164b8dbff0a9b6431248bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive Deep Co-Occurrence Feature Learning Based on Classifier-Fusion for Remote Sensing Scene Classification
por: Ronald Tombe, et al.
Publicado: (2021) -
CFCANet: A Complete Frequency Channel Attention Network for SAR Image Scene Classification
por: Bo Su, et al.
Publicado: (2021) -
Global Context-Based Multilevel Feature Fusion Networks for Multilabel Remote Sensing Image Scene Classification
por: Xin Wang, et al.
Publicado: (2021) -
Cross-Bands Information Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral Data Visualization
por: Iulia Coca Neagoe, et al.
Publicado: (2021) -
Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
por: Hao Li, et al.
Publicado: (2021)