PointMTL: Multi-Transform Learning for Effective 3D Point Cloud Representations
Effectively learning and extracting the feature representations of 3D point clouds is an important yet challenging task. Most of existing works achieve reasonable performance in 3D vision tasks by modeling the relationships among points appropriately. However, the feature representations are only le...
Guardado en:
Autores principales: | Yifan Jian, Yuwei Yang, Zhi Chen, Xianguo Qing, Yang Zhao, Liang He, Xuekun Chen, Wei Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e3f67a428074777ae56849b7057d65f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
por: Muhammad Ibrahim, et al.
Publicado: (2021) -
Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
por: Soyeong Kim, et al.
Publicado: (2021) -
Forest Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds
por: Sean Krisanski, et al.
Publicado: (2021) -
MPCR-Net: Multiple Partial Point Clouds Registration Network Using a Global Template
por: Shijie Su, et al.
Publicado: (2021) -
Automobile indexation from 3D point clouds of urban scenarios
por: Ramirez-Pedraza Alfonso, et al.
Publicado: (2021)