Statistical inference for valued-edge networks: the generalized exponential random graph model.
Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks based on both endogenous and exogenous factors, exponential random graph models are a ubiquitous means...
Guardado en:
Autores principales: | Bruce A Desmarais, Skyler J Cranmer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e41ba641cf04d34bb600bb00bcde5b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Testing biological network motif significance with exponential random graph models
por: Alex Stivala, et al.
Publicado: (2021) -
Inverted Length-Biased Exponential Model: Statistical Inference and Modeling
por: Waleed Almutiry
Publicado: (2021) -
Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
por: Nicolò Vallarano, et al.
Publicado: (2021) -
Smallholder farmers' social networks and resource-conserving agriculture in Ghana: a multicase comparison using exponential random graph models
por: Hanson Nyantakyi-Frimpong, et al.
Publicado: (2019) -
A graph neural network framework for causal inference in brain networks
por: S. Wein, et al.
Publicado: (2021)