Practical geospatial and sociodemographic predictors of human mobility

Abstract Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Corrine W. Ruktanonchai, Shengjie Lai, Chigozie E. Utazi, Alex D. Cunningham, Patrycja Koper, Grant E. Rogers, Nick W. Ruktanonchai, Adam Sadilek, Dorothea Woods, Andrew J. Tatem, Jessica E. Steele, Alessandro Sorichetta
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9e47a7f8c9d7423098bb8b5855e8376f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9e47a7f8c9d7423098bb8b5855e8376f
record_format dspace
spelling oai:doaj.org-article:9e47a7f8c9d7423098bb8b5855e8376f2021-12-02T18:46:59ZPractical geospatial and sociodemographic predictors of human mobility10.1038/s41598-021-94683-72045-2322https://doaj.org/article/9e47a7f8c9d7423098bb8b5855e8376f2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94683-7https://doaj.org/toc/2045-2322Abstract Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.Corrine W. RuktanonchaiShengjie LaiChigozie E. UtaziAlex D. CunninghamPatrycja KoperGrant E. RogersNick W. RuktanonchaiAdam SadilekDorothea WoodsAndrew J. TatemJessica E. SteeleAlessandro SorichettaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Corrine W. Ruktanonchai
Shengjie Lai
Chigozie E. Utazi
Alex D. Cunningham
Patrycja Koper
Grant E. Rogers
Nick W. Ruktanonchai
Adam Sadilek
Dorothea Woods
Andrew J. Tatem
Jessica E. Steele
Alessandro Sorichetta
Practical geospatial and sociodemographic predictors of human mobility
description Abstract Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.
format article
author Corrine W. Ruktanonchai
Shengjie Lai
Chigozie E. Utazi
Alex D. Cunningham
Patrycja Koper
Grant E. Rogers
Nick W. Ruktanonchai
Adam Sadilek
Dorothea Woods
Andrew J. Tatem
Jessica E. Steele
Alessandro Sorichetta
author_facet Corrine W. Ruktanonchai
Shengjie Lai
Chigozie E. Utazi
Alex D. Cunningham
Patrycja Koper
Grant E. Rogers
Nick W. Ruktanonchai
Adam Sadilek
Dorothea Woods
Andrew J. Tatem
Jessica E. Steele
Alessandro Sorichetta
author_sort Corrine W. Ruktanonchai
title Practical geospatial and sociodemographic predictors of human mobility
title_short Practical geospatial and sociodemographic predictors of human mobility
title_full Practical geospatial and sociodemographic predictors of human mobility
title_fullStr Practical geospatial and sociodemographic predictors of human mobility
title_full_unstemmed Practical geospatial and sociodemographic predictors of human mobility
title_sort practical geospatial and sociodemographic predictors of human mobility
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9e47a7f8c9d7423098bb8b5855e8376f
work_keys_str_mv AT corrinewruktanonchai practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT shengjielai practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT chigozieeutazi practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT alexdcunningham practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT patrycjakoper practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT granterogers practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT nickwruktanonchai practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT adamsadilek practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT dorotheawoods practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT andrewjtatem practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT jessicaesteele practicalgeospatialandsociodemographicpredictorsofhumanmobility
AT alessandrosorichetta practicalgeospatialandsociodemographicpredictorsofhumanmobility
_version_ 1718377695669125120