Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming
Climate change affects timing and variability of spring phenology, as well as occurrence of spring frosts, and therefore influences forest structure, function, and management practices. In this study, we evaluated changes in budburst timing, sequential order of budburst, budburst temperatures, and f...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e4b5166425e480791eb5bcb0bcba863 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9e4b5166425e480791eb5bcb0bcba863 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9e4b5166425e480791eb5bcb0bcba8632021-12-04T04:36:09ZEarlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming2666-719310.1016/j.tfp.2021.100127https://doaj.org/article/9e4b5166425e480791eb5bcb0bcba8632021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666719321000662https://doaj.org/toc/2666-7193Climate change affects timing and variability of spring phenology, as well as occurrence of spring frosts, and therefore influences forest structure, function, and management practices. In this study, we evaluated changes in budburst timing, sequential order of budburst, budburst temperatures, and frosts, from 1981–2010 baseline to different future climates (+2, +4, and +6 °C for moderate, high, and extremely high warming) for selected boreal and temperate species in eastern Canada. We used species-specific budburst models that are developed from large-scale forcing experiments.Budburst averaged 10–15 days earlier per 2 °C increase of temperatures, except for temperate yellow birch and eastern white pine that slowed down to 5–7 days in budburst advancement from +4 to +6 °C. Earlier budburst was associated with greater annual and interspecific variations in budburst timing, lower budburst temperatures, more frosts, and less annual variations in sequential order of budburst. Compared to temperate trees, boreal trees had greater budburst advances and annual variations, but less interspecific variations in timing and sequential order of budburst. Early flushing species had greater phenological changes and annual variations, as well as more frosts. Our results suggest that budburst advance that has occurred will continue with greater among years/species variability but is unlikely to converge between boreal and temperate regions in eastern Canada under anticipated levels of climate warming.Jing TaoRongzhou ManQing-Lai DangElsevierarticleBudburst timingAnnual variationsInterspecific variationsSequential orderBudburst temperatureFrostsForestrySD1-669.5Plant ecologyQK900-989ENTrees, Forests and People, Vol 6, Iss , Pp 100127- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Budburst timing Annual variations Interspecific variations Sequential order Budburst temperature Frosts Forestry SD1-669.5 Plant ecology QK900-989 |
spellingShingle |
Budburst timing Annual variations Interspecific variations Sequential order Budburst temperature Frosts Forestry SD1-669.5 Plant ecology QK900-989 Jing Tao Rongzhou Man Qing-Lai Dang Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming |
description |
Climate change affects timing and variability of spring phenology, as well as occurrence of spring frosts, and therefore influences forest structure, function, and management practices. In this study, we evaluated changes in budburst timing, sequential order of budburst, budburst temperatures, and frosts, from 1981–2010 baseline to different future climates (+2, +4, and +6 °C for moderate, high, and extremely high warming) for selected boreal and temperate species in eastern Canada. We used species-specific budburst models that are developed from large-scale forcing experiments.Budburst averaged 10–15 days earlier per 2 °C increase of temperatures, except for temperate yellow birch and eastern white pine that slowed down to 5–7 days in budburst advancement from +4 to +6 °C. Earlier budburst was associated with greater annual and interspecific variations in budburst timing, lower budburst temperatures, more frosts, and less annual variations in sequential order of budburst. Compared to temperate trees, boreal trees had greater budburst advances and annual variations, but less interspecific variations in timing and sequential order of budburst. Early flushing species had greater phenological changes and annual variations, as well as more frosts. Our results suggest that budburst advance that has occurred will continue with greater among years/species variability but is unlikely to converge between boreal and temperate regions in eastern Canada under anticipated levels of climate warming. |
format |
article |
author |
Jing Tao Rongzhou Man Qing-Lai Dang |
author_facet |
Jing Tao Rongzhou Man Qing-Lai Dang |
author_sort |
Jing Tao |
title |
Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming |
title_short |
Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming |
title_full |
Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming |
title_fullStr |
Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming |
title_full_unstemmed |
Earlier and more variable spring phenology projected for eastern Canadian boreal and temperate forests with climate warming |
title_sort |
earlier and more variable spring phenology projected for eastern canadian boreal and temperate forests with climate warming |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/9e4b5166425e480791eb5bcb0bcba863 |
work_keys_str_mv |
AT jingtao earlierandmorevariablespringphenologyprojectedforeasterncanadianborealandtemperateforestswithclimatewarming AT rongzhouman earlierandmorevariablespringphenologyprojectedforeasterncanadianborealandtemperateforestswithclimatewarming AT qinglaidang earlierandmorevariablespringphenologyprojectedforeasterncanadianborealandtemperateforestswithclimatewarming |
_version_ |
1718372930957606912 |