A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota
Abstract Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Its composition varies between individuals, and depends on factors related to host and microbial communities, which need to adapt to utilize various nutrients present in gut environm...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e4cf3c271c44d649d73061c28ac898f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9e4cf3c271c44d649d73061c28ac898f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9e4cf3c271c44d649d73061c28ac898f2021-12-02T17:55:13ZA carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota10.1038/s41598-020-69241-22045-2322https://doaj.org/article/9e4cf3c271c44d649d73061c28ac898f2020-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-69241-2https://doaj.org/toc/2045-2322Abstract Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Its composition varies between individuals, and depends on factors related to host and microbial communities, which need to adapt to utilize various nutrients present in gut environment. We profiled fecal microbiota in 63 healthy adult individuals using metaproteomics, and focused on microbial CAZy (carbohydrate-active) enzymes involved in glycan foraging. We identified two distinct CAZy profiles, one with many Bacteroides-derived CAZy in more than one-third of subjects (n = 25), and it associated with high abundance of Bacteroides in most subjects. In a smaller subset of donors (n = 8) with dietary parameters similar to others, microbiota showed intense expression of Prevotella-derived CAZy including exo-beta-(1,4)-xylanase, xylan-1,4-beta-xylosidase, alpha-l-arabinofuranosidase and several other CAZy belonging to glycosyl hydrolase families involved in digestion of complex plant-derived polysaccharides. This associated invariably with high abundance of Prevotella in gut microbiota, while in subjects with lower abundance of Prevotella, microbiota showed no Prevotella-derived CAZy. Identification of Bacteroides- and Prevotella-derived CAZy in microbiota proteome and their association with differences in microbiota composition are in evidence of individual variation in metabolic specialization of gut microbes affecting their colonizing competence.Juhani AakkoSami PietiläRaine ToivonenAnne RokkaKati MokkalaKirsi LaitinenLaura EloArno HänninenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Juhani Aakko Sami Pietilä Raine Toivonen Anne Rokka Kati Mokkala Kirsi Laitinen Laura Elo Arno Hänninen A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota |
description |
Abstract Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Its composition varies between individuals, and depends on factors related to host and microbial communities, which need to adapt to utilize various nutrients present in gut environment. We profiled fecal microbiota in 63 healthy adult individuals using metaproteomics, and focused on microbial CAZy (carbohydrate-active) enzymes involved in glycan foraging. We identified two distinct CAZy profiles, one with many Bacteroides-derived CAZy in more than one-third of subjects (n = 25), and it associated with high abundance of Bacteroides in most subjects. In a smaller subset of donors (n = 8) with dietary parameters similar to others, microbiota showed intense expression of Prevotella-derived CAZy including exo-beta-(1,4)-xylanase, xylan-1,4-beta-xylosidase, alpha-l-arabinofuranosidase and several other CAZy belonging to glycosyl hydrolase families involved in digestion of complex plant-derived polysaccharides. This associated invariably with high abundance of Prevotella in gut microbiota, while in subjects with lower abundance of Prevotella, microbiota showed no Prevotella-derived CAZy. Identification of Bacteroides- and Prevotella-derived CAZy in microbiota proteome and their association with differences in microbiota composition are in evidence of individual variation in metabolic specialization of gut microbes affecting their colonizing competence. |
format |
article |
author |
Juhani Aakko Sami Pietilä Raine Toivonen Anne Rokka Kati Mokkala Kirsi Laitinen Laura Elo Arno Hänninen |
author_facet |
Juhani Aakko Sami Pietilä Raine Toivonen Anne Rokka Kati Mokkala Kirsi Laitinen Laura Elo Arno Hänninen |
author_sort |
Juhani Aakko |
title |
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota |
title_short |
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota |
title_full |
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota |
title_fullStr |
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota |
title_full_unstemmed |
A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota |
title_sort |
carbohydrate-active enzyme (cazy) profile links successful metabolic specialization of prevotella to its abundance in gut microbiota |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/9e4cf3c271c44d649d73061c28ac898f |
work_keys_str_mv |
AT juhaniaakko acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT samipietila acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT rainetoivonen acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT annerokka acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT katimokkala acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT kirsilaitinen acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT lauraelo acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT arnohanninen acarbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT juhaniaakko carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT samipietila carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT rainetoivonen carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT annerokka carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT katimokkala carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT kirsilaitinen carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT lauraelo carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota AT arnohanninen carbohydrateactiveenzymecazyprofilelinkssuccessfulmetabolicspecializationofprevotellatoitsabundanceingutmicrobiota |
_version_ |
1718379124876115968 |