Comparative Analysis of Machine Learning Algorithms in Automatic Identification and Extraction of Water Boundaries
Monitoring open water bodies accurately is important for assessing the role of ecosystem services in the context of human survival and climate change. There are many methods available for water body extraction based on remote sensing images, such as the normalized difference water index (NDWI), modi...
Guardado en:
Autores principales: | Aimin Li, Meng Fan, Guangduo Qin, Youcheng Xu, Hailong Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9e52ce183e274cc6b26481b946695a88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncertainties Involved in the Use of Thresholds for the Detection of Water Bodies in Multitemporal Analysis from Landsat-8 and Sentinel-2 Images
por: Luis Gustavo de Moura Reis, et al.
Publicado: (2021) -
Water extraction model of multispectral optical remote sensing image
por: DENG Kaiyuan, et al.
Publicado: (2021) -
Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, north-central Namibia
por: Taimi S. Kapalanga, et al.
Publicado: (2021) -
Evaluation of Several Spectral Indices for Estimation of Canola Yield using Sentinel-2 Sensor Images
por: N Loveimi, et al.
Publicado: (2021) -
Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms – A case study in the Miyun Reservoir, China
por: Jiang Qun'ou, et al.
Publicado: (2021)