Network Pharmacology and Molecular Docking-Based Analysis on Bioactive Anticoronary Heart Disease Compounds in Trichosanthes kirilowii Maxim and Bulbus allii Macrostemi

Trichosanthes kirilowii Maxim. and Bulbus allii Macrostemi are the components of Gualou Xiebai decoction (GLXB), a commonly used herbal combination for the treatment of coronary heart disease (CHD) in traditional Chinese medicine. Although GLXB is associated with a good clinical effect, its active c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi-Ding Yu, Wang-Jun Hou, Juan Zhang, Yi-Tao Xue, Yan Li
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/9e58a4e402f64ef781b36938248db419
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Trichosanthes kirilowii Maxim. and Bulbus allii Macrostemi are the components of Gualou Xiebai decoction (GLXB), a commonly used herbal combination for the treatment of coronary heart disease (CHD) in traditional Chinese medicine. Although GLXB is associated with a good clinical effect, its active compounds and mechanism of action remain unclear, which limits its clinical application and the development of novel drugs. In this study, we explored key compounds, targets, and mechanisms of action for GLXB in the treatment of CHD using the network pharmacology approach. We identified 18 compounds and 21 action targets via database screening. Enrichment analysis indicated that the effects of GLXB in patients with CHD are primarily associated with the regulation of signalling pathways for tumour necrosis factor, nuclear factor-kappa B, hypoxia-inducible factor-1, arachidonic acid metabolism, and insulin resistance. GLXB thus exerts anti-inflammatory, antihypoxic, and antiagglutinating effects; regulates lipid metabolism; and combats insulin resistance in CHD via these pathways, respectively. After reverse targeting, we observed that the main active compounds of GLXB in the treatment of CHD were quercetin, naringenin, β-sitosterol, ethyl linolenate, ethyl linoleate, and prostaglandin B1. To explore the potential of these compounds in the treatment of CHD, we verified the affinity of the compounds and targets via molecular docking analysis. Our study provides a bridge for the transformation of natural herbs and molecular compounds into novel drug therapies for CHD.