Feature fusion and clustering for key frame extraction
Numerous limitations of Shot-based and Content-based key-frame extraction approaches have encouraged the development of Cluster-based algorithms. This paper proposes an Optimal Threshold and Maximum Weight (OTMW) clustering approach that allows accurate and automatic extraction of video summarizatio...
Enregistré dans:
Auteurs principaux: | Yunyun Sun, Peng Li, Zhaohui Jiang, Sujun Hu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9e5d6f9f890e44cbb54cf572d1df78f7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree
par: Yunyun Liang, et autres
Publié: (2021) -
Reconstitution of a mini‐gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in Streptomyces albus
par: Dong Li, et autres
Publié: (2021) -
The world of ribonucleases from pseudomonads: a short trip through the main features and singularities
par: Patrícia Apura, et autres
Publié: (2021) -
Deletion of a hybrid NRPS‐T1PKS biosynthetic gene cluster via Latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl‐spinosyn biosynthesis and growth development
par: Jie Rang, et autres
Publié: (2021) -
Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization
par: Wenqi Ji, et autres
Publié: (2021)